Details

Title

Comparison of Water Stress and uv Radiation Effects on Induction of Cam and Antioxidative Defense in the Succulent Rosularia Elymaitica (Crassulaceae)

Journal title

Acta Biologica Cracoviensia s. Botanica

Yearbook

2011

Numer

No 2

Publication authors

Divisions of PAS

Nauki Biologiczne i Rolnicze

Publisher

Biological Commission of the Polish Academy of Sciences – Cracow Branch

Date

2011

Identifier

eISSN 1898-0295 ; ISSN 0001-5296

References

Akhiani K. (2000), Flora of Iran, 32, 19. ; Apel K. (2004), Reactive oxygen species: Metabolism, oxidative stress, and signal transduction, Annual Review of Plant Biology, 55, 373, doi.org/10.1146/annurev.arplant.55.031903.141701 ; C. Ben Ahmed (2009), Changes in gas exchange, proline accumulation and antioxidative enzyme activities in three olive cultivars under contrasting water availability regimes, Environmental and Experimental Botany, 67, 345, doi.org/10.1016/j.envexpbot.2009.07.006 ; Borland A. (1998), Inducibility of Crassulacean acid metabolism (CAM) in <i>Clusia</i> species: Physiological/biochemical characterization and intercellular localization of carboxylation and decarboxylation processes in three species which exhibit different degrees of CAM, Planta, 205, 342, doi.org/10.1007/s004250050329 ; Caldwell M. (1971), Photophysiology, 131, doi.org/10.1016/B978-0-12-282606-1.50010-6 ; Castillo F. (1996), Antioxidative protection in the inducible CAM plant <i>Sedum album</i> L. following the imposition of severe water stress and recovery, Oecologia, 107, 469, doi.org/10.1007/BF00333937 ; Cushman J. (2002), Induction of crassulacean acid metabolism by water limitation, Plant, Cell and Environment, 25, 295, doi.org/10.1046/j.0016-8025.2001.00760.x ; Ennajeh M. (2010), Comparative impacts of water stress on the leaf anatomy of a drought-resistant and a drought-sensitive olive cultivar, Journal of Horticultural Science and Biotechnology, 85, 289, doi.org/10.1080/14620316.2010.11512670 ; Filella I. (1999), Altitudinal differences in UV absorbance, UV reflectance and related morphological traits of <i>Quercus ilex</i> and <i>Rhododendron ferrugineum</i> in the Mediterranean region, Plant Ecology, 145, 157, doi.org/10.1023/A:1009826803540 ; Grams T. (2002), High light-induced switch from C<sup>3</sup>-photosynthesis to crassulacean acid metabolism is mediated by UV-A/blue light, Journal of Experimental Botany, 53, 1475, doi.org/10.1093/jexbot/53.373.1475 ; Grams T. (1998), Are there species in the genus <i>Clusia</i> with obligate C<sup>3</sup>-Photosynthesis?, Journal of Plant Physiology, 152, 1, doi.org/10.1016/S0176-1617(98)80094-1 ; Gravatt D. (1992), Comparative ecophysiology of five species of <i>Sedum</i> (Crassulaceae) under well-watered and drought-stressed conditions, Oecologica, 92, 532, doi.org/10.1007/BF00317845 ; Griffiths H. (1989), Recycling of respiratory CO<sub>2</sub> during Crassulacean acid Metabolism: alleviation of photoinhibition in <i>Pyrrosia piloselloides.</i>, Planta, 179, 115, doi.org/10.1007/BF00395778 ; Groenhof A. (1988), Photosynthetic changes in the inducible CAM plant <i>Sedum telephium</i> L. following the imposition of water stress. II. Changes in the activity of phosphoenolpyruvate carboxylase, Annals of Botany, 62, 187, doi.org/10.1093/oxfordjournals.aob.a087650 ; Habibi G. (2010), Photosynthetic characteristics and antioxidative responses in three species of Crassulaceae following drought stress, Journal of Sciences, I. R. Iran, 21, 205. ; Hajiboland R. (2007), Responses of antioxidant defense capacity and photosynthesis of bean (<i>Phaseolus vulgaris</i> L.) plants to copper and manganese toxicity under different light intensities, Acta Biologica Szegediensis, 51, 93. ; Herrera A. (2010), Induction by drought of crassulacean acid metabolism in the terrestrial bromeliad, Puya floccose. Photosynthetica, 48, 3, 383, doi.org/10.1007/s11099-010-0050-3 ; Holtum J. (1982), Activity of enzymes of carbon metabolism during the induction of crassulacean acid metabolism in <i>Mesembryanthemum crystallinum</i> L, Planta, 155, 8, doi.org/10.1007/BF00402925 ; Jacobs J. (2007), UV protective coatings: A botanical approach, Progress in Organic Coatings, 58, 166, doi.org/10.1016/j.porgcoat.2006.08.023 ; Johnson C. (1957), Comparative chlorine requirements of different plant species, Plant and Soil, 8, 337, doi.org/10.1007/BF01666323 ; Kornaś A. (2007), Daily rhythm of MnSOD in the C<sub>3</sub>-CAM intermediate Clusia fluminensis Planch. et Triana, Acta Physiologiae Plantarum, 29, 369, doi.org/10.1007/s11738-007-0046-1 ; Kornaś A. (2010), Light stress is not effective to enhanced crassulacean acid metabolism, Zeitschrift für Naturforschung C, Journal of Biosciences, 65, 79, doi.org/10.1515/znc-2010-1-214 ; Kuzniak E. (2011), Effects of NaCl on the response of <i>Mesembryanthemum crystallinum</i> callus to <i>Botrytis cinerea</i> infection, Biologia Plantarum, 55, 423, doi.org/10.1007/s10535-011-0106-7 ; Lara M. (2003), Induction of a Crassulacean acid-like metabolism in the C<sub>4</sub> succulent plant, <i>Portulaca oleracea</i> L.: physiological and morphological changes are accompanied by specific modifications in phosphoenolpyruvate carboxylase, Photosynthesis Research, 77, 241, doi.org/10.1023/A:1025834120499 ; Lawlor D. (2002), Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants, Plant Cell and Environment, 25, 275, doi.org/10.1046/j.0016-8025.2001.00814.x ; Lüttge U. (2004), Ecophysiology of crassulacean acid metabolism (CAM), Annals of Botany, 93, 629, doi.org/10.1093/aob/mch087 ; Miszalski Z. (2007), Superoxide dismutase activity in C<sub>3</sub> and C<sub>3</sub>/CAM intermediate species of Clusia, Biologia Plantarum, 51, 86, doi.org/10.1007/s10535-007-0018-8 ; Mullineaux P. (2006), Spatial dependence for hydrogen peroxide-directed signaling in light-stressed plants, Plant Physiology, 141, 346, doi.org/10.1104/pp.106.078162 ; Murmu J. (2003), Phosphoenolpyruvate carboxylase from leaves of C<sup>4</sup> plants. Biochemistry and molecular biology of regulation, Indian Journal of Plant Physiology, 1, 164. ; Neill S. (2002), Hydrogen peroxide and nitric oxide as signaling molecules in plants, Journal of Experimental Botany, 53, 1237, doi.org/10.1093/jexbot/53.372.1237 ; Niewiadomska E. (2004), A salinity-induced C<sub>3</sub>-CAM transition increases energy conservation in the halophyte <i>Mesembryanthemum crystallinum</i> L, Plant and Cell Physiology, 45, 789, doi.org/10.1093/pcp/pch079 ; Rybus-Zając M. (2010), Effect of UV-B radiation on antioxidative enzyme activity in cucumber cotyledons, Acta Biologica Cracoviensia Series Botanica, 52, 97, doi.org/10.2478/v10182-010-0030-8 ; Sayed O. (2001), Crassulacean acid metabolism 1975-2000, a check list, Photosynthetica, 39, 339, doi.org/10.1023/A:1020292623960 ; Skórska E. (2011), Comparison of chlorophyll fluorescence parameters of <i>Cucumis sativus</i> and <i>Mentha piperita</i> leaves exposed to short-term UV-B irradiation, Acta Biologica Cracoviensia Series Botanica, 53, 16, doi.org/10.2478/v10182-011-0002-7 ; Ślesak I. (2002), Redox control of oxidative stress responses in the C<sub>3</sub>-CAM intermediate plant, Mesembryanthemum crystallinum. Plant Physiology and Biochemistry, 40, 669, doi.org/10.1016/S0981-9428(02)01409-2 ; H-B Shao (2008), Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells, International Journal of Biological Sciences, 4, 8, doi.org/10.7150/ijbs.4.8 ; Smith J. (1996), Crassulacean Acid Metabolism: Biochemistry, Ecophysiology and Evolution, 114, 427, doi.org/10.1007/978-3-642-79060-7_27 ; Ting I. (1985), Night Fixation and CO<sub>2</sub> Metabolism, 371. ; Wang J. (2007), Over-expression, purification, and characterization of recombinant NAD-malic enzyme from <i>Escherichia coli</i> K12, Protein Expression and Purification, 53, 97, doi.org/10.1016/j.pep.2006.11.017 ; Winter K. (1996), Crassulacean Acid Metabolism, 1, doi.org/10.1007/978-3-642-79060-7_1

DOI

10.2478/v10182-011-0020-5

×