Details

Title

Effects of Cadmium Stress on Root Tip Cells and Some Physiological Indexes in Allium Cepa Var. Agrogarum L.

Journal title

Acta Biologica Cracoviensia s. Botanica

Yearbook

2012

Numer

No 1

Publication authors

Divisions of PAS

Nauki Biologiczne i Rolnicze

Publisher

Biological Commission of the Polish Academy of Sciences – Cracow Branch

Date

2012

Identifier

ISSN 0001-5296 ; eISSN 1898-0295

References

Amenós M. (2009), Different effects of aluminum on the actin cytoskeleton and Brefeldin A-sensitive vesicle recycling in root apex cells of two maize varieties differing in root elongation rate and aluminum tolerance, Plant Cell Physiology, 50, 528, doi.org/10.1093/pcp/pcp013 ; Ammar W. (2007), Cadmium stress induces changes in the lipid composition and biosynthesis in tomato (<i>Lycopersicon esculentum</i> Mill.) leaves, Journal of Plant Growth Regulation, 53, 75, doi.org/10.1007/s10725-007-9203-1 ; Baker A. (1994), The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants, Resources, Conservation and Recycling, 11, 41, doi.org/10.1016/0921-3449(94)90077-9 ; Beauchamp C. (1971), Superoxide dismutase: improved assays and an assay applicable to acrylamide gels, Annual Biochemistry, 44, 276, doi.org/10.1016/0003-2697(71)90370-8 ; Beers R. (1952), Colorimetric method for estimation of catalase, Journal of Biological Chemistry, 195, 133. ; Benavides M. (2005), Cadmium toxicity in plants, Brazilian Journal of Plant Physiology, 17, 21. ; Boominathan R. (2003), Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens. Biotechnology and Bioengineering, 83, 158, doi.org/10.1002/bit.10656 ; Broadley M. (2001), Phylogenetic variation in heavy metal accumulation in angiosperms, New Phytologist, 152, 9, doi.org/10.1046/j.0028-646x.2001.00238.x ; Burzyński M. (2007), Effects of copper and cadmium on photosynthesis in cucumber cotyledons, Photosynthetica, 45, 239, doi.org/10.1007/s11099-007-0038-9 ; Chen F. (2010), Genotype-dependent effect of exogenous nitric oxide on Cd-induced changes in antioxidative metabolism, ultrastructure, and photosynthetic performance in barley seedlings (<i>Hordeum vulgare</i>), Journal of Plant Growth Regulation, 29, 394, doi.org/10.1007/s00344-010-9151-2 ; Cho U. (2005), Oxidative stress in <i>Arabidopsis thaliana</i> exposed to cadmium is due to hydrogen peroxide accumulation, Plant Science, 168, 113, doi.org/10.1016/j.plantsci.2004.07.021 ; Duan X. (2003), The study on the trace elements in the free growing vine of harvested tuber dioscoreas, Journal of Guangxi Normal University, 21, 122. ; Ekmekçi Y. (2008), Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars, Journal of Plant Physiology, 165, 600, doi.org/10.1016/j.jplph.2007.01.017 ; Fojta M. (2006), Electrochemical monitoring of phytochelatin accumulation in <i>Nicotiana tabacum</i> cells exposed to sub-cytotoxic and cytotoxic levels of cadmium, Analytica Chimica Acta, 558, 171, doi.org/10.1016/j.aca.2005.10.084 ; Jiang W. (2009), Cd-induced system of defence in the garlic root meristematic cells, Biologia Plantarum, 53, 369, doi.org/10.1007/s10535-009-0069-0 ; Kato M. (1987), Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves: phenolic-dependent peroxidative degradation, Canadian Journal of Botany, 65, 729, doi.org/10.1139/b87-097 ; Li H. (2000), Principles and Techniques of Plant Physiological Biochemical Experiment, 260. ; Li L. (2005), Activity of the enzymes of the antioxidative system in cadmium-treated <i>Oxya chinensis</i> (Orthoptera Acridoidae), Environmental Toxicology and Pharmacology, 20, 412, doi.org/10.1016/j.etap.2005.04.001 ; Liu D. (2003/2004), Effects of cadmium on root growth, cell division and nucleoli in root tips of garlic, Plant Biology, 47, 79. ; Liu D. (2007), Localization of cadmium in the root cells of <i>Allium cepa</i> by energy dispersive X-ray analysis, Biologia Plantarum, 51, 2, 363, doi.org/10.1007/s10535-007-0075-z ; Liu D. (2008), Hexavalent chromium uptake and its effects on mineral uptake, antioxidant defence system and photosynthesis in <i>Amaranthus viridis</i> L, Bioresource Technology, 99, 2628, doi.org/10.1016/j.biortech.2007.04.045 ; Liu D. (2009), Pb/Cu effects on the organization of microtubule cytoskeleton in interphase and mitotic cells of <i>Allium sativum</i> L, Plant Cell Reports, 28, 695, doi.org/10.1007/s00299-009-0669-3 ; Ma J. (2005), Subcellular localization of Cd and Zn in the leaves of a -Cd-hyperac-cumulating ecotype of, Thlaspi caerulescens. Planta, 220, 731. ; Markovska Y. (2009), Cadmium-induced oxidative damage and antioxidant responses in <i>Brassica juncea</i> plants, Biologia Plantarum, 53, 1, 151, doi.org/10.1007/s10535-009-0023-1 ; Mobin M. (2007), Photosynthetic activity, pigment composition and antioxidative response of two mustard (<i>Brassica juncea</i>) cultivars differing in photosynthetic capacity subjected to cadmium stress, Journal of Plant Physiology, 164, 601, doi.org/10.1016/j.jplph.2006.03.003 ; Muńoz N. (2008), Cadmium-induced early changes in O<sub>2</sub><sup>o-</sup>, H<sub>2</sub>O<sub>2</sub> and antioxidative enzymes in soybean (<i>Glycine max</i> L.) leaves, Journal of Plant Growth Regulation, 56, 159, doi.org/10.1007/s10725-008-9297-0 ; Nouairi I. (2006), Comparative study of cadmium effects on membrane lipid composition of <i>Brassica juncea and Brassica napus</i> leaves, Plant Science, 170, 511, doi.org/10.1016/j.plantsci.2005.10.003 ; Prasad M. (1995), Cadmium toxicity and tolerance in vascular plants, Environmental and Experimental Botany, 35, 525, doi.org/10.1016/0098-8472(95)00024-0 ; Qadir S. (2004), Genotypic variation in phytoremediation potential of <i>Brassica juncea</i> cultivars exposed to Cd stress, Plant Science, 167, 1171, doi.org/10.1016/j.plantsci.2004.06.018 ; Qin R. (2010), Effects of aluminum on nucleoli in root tip cells and selected physiological and biochemical characters in <i>Allium cepa</i> var. <i>agrogarum</i> L. BMC, Plant Biology, 225, 10, 1471. ; Radotic K. (2000), Changes in peroxidase activity and sisozymes in spruce needles after exposure to different concentrations of cadmium, Environmental and Experimental Botany, 44, 105, doi.org/10.1016/S0098-8472(00)00059-9 ; Romero-Puertas M. (2004), Cadmium-induced subcellular accumulation of O<sub>2</sub><sup>-</sup> and H<sub>2</sub>O<sub>2</sub> in pea leaves, Plant, Cell and Environment, 27, 1122, doi.org/10.1111/j.1365-3040.2004.01217.x ; Shafi M. (2009), Effect of cadmium and salinity stresses on growth and antioxidant enzyme activities of wheat (<i>Triticum aestivum</i> L.), Bulletin of Environmental Contamination and Toxicology, 82, 772, doi.org/10.1007/s00128-009-9707-7 ; Sheldon S. (1981), Nucleolar persistence in embryonal carcinoma cells, Experimental Cell Research, 132, 185, doi.org/10.1016/0014-4827(81)90094-X ; Shi G. (2010), Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes, Journal of Plant Growth Regulation, 61, 45, doi.org/10.1007/s10725-010-9447-z ; Skórzyńska-Polit E. (2006), Lipid peroxidation in cadmium-treated <i>Phaseolus coccineus</i> plants, Archives of Environmental Contamination and Toxicology, 50, 482, doi.org/10.1007/s00244-005-0125-5 ; Stephan U. (1989), Physiological disorders of the nicotianamine-auxotroph tomato mutant chloronerva at different levels of iron nutrition. I. Growth characteristics and physiological abnormalities as related to iron and nicotianamine supply, Acta Botanica Neerlandica, 38, 147. ; Tiryakioglu M. (2006), Antioxidant defense system and cadmium uptake in barley genotypes differing in cadmium tolerance, Journal of Trace Elements in Medicine & Biology, 20, 181, doi.org/10.1016/j.jtemb.2005.12.004 ; A. van der Maem (2006), The nuclear pore complex: the gateway to successful non-viral gene delivery, Pharmaceutical Research, 23, 447, doi.org/10.1007/s11095-005-9445-4 ; Verma K. (2008), Cadmium induced oxidative stress and changes in soluble and ionically bound cell wall peroxidase activities in roots of seedling and 3-4 leaf stage plants of <i>Brassica juncea</i> (L.) czern, Plant Cell Reports, 27, 1261, doi.org/10.1007/s00299-008-0552-7 ; Vostrikova T. (2006), Cytogenetic responses of birch to stress factors, Biological Bulletin, 33, 185, doi.org/10.1134/S1062359006020142 ; Wahid A. (2008), Varietal differences in mung bean (<i>Vigna radiata</i>) for growth, yield, toxicity symptoms and cadmium accumulation, Annals of Applied Biology, 152, 59, doi.org/10.1111/j.1744-7348.2007.00192.x ; Wang M. (2007), Cadmium accumulation and its effects on metal uptake in maize (<i>Zea mays</i> L.), Bioresource Technology, 98, 82, doi.org/10.1016/j.biortech.2005.11.028 ; Xu P. (2008), Effects of Cd<sup>2+</sup> on seedling growth of garlic (<i>Allium sativum</i> L.) and selected physiological and biochemical characters, Bioresource Technology, 99, 6372, doi.org/10.1016/j.biortech.2007.11.073 ; Zhang S. (2009), Cadmium induction of lipid peroxidation and effects on root tip cells and antioxidant enzyme activities in <i>Vicia faba</i> L, Ecotoxicology, 18, 814, doi.org/10.1007/s10646-009-0324-3 ; Zou J. (2008), Accumulation of cadmium in three sunflower (<i>Helianthus annuus</i> L.) cultivars, Pakistan Journal of Botany, 40, 759. ; Zou J. (2009), Antioxidant response system and chlorophyll fluorescence in chromium (vi)-treated <i>Zea mays</i> L. Seedlings, Acta Biologica Cracoviensia Series Botanica, 51, 23.

DOI

10.2478/v10182-012-0015-x

×