Details

Title

Miscanthus: Inter- and Intraspecific Genome Size Variation Among M. × Giganteus, M. Sinensis, M. Sacchariflorus Accessions

Journal title

Acta Biologica Cracoviensia s. Botanica

Yearbook

2015

Numer

No 1

Publication authors

Divisions of PAS

Nauki Biologiczne i Rolnicze

Abstract

<jats:title>Abstract</jats:title> <jats:p>Since <jats:italic>M. sinensis</jats:italic> Anderss., <jats:italic>M. sacchariflorus</jats:italic> (Maxim.) Hack. and <jats:italic>M. ×giganteus</jats:italic> J.M.Greef &amp; Deuter ex Hodk. and Renvoize have considerably the highest potential for biomass production among <jats:italic>Miscanthus</jats:italic> Anderss. species, there is an urgent need to broaden the knowledge about cytological characteristics required for their improvement. In this study our objectives were to assess the genome size variation among eighteen <jats:italic>Miscanthus</jats:italic> accessions, as well as estimation of the monoploid genome size (2C and Cx) of the <jats:italic>M. sinensis</jats:italic> cultivars, which have not been analyzed yet. The characterization of three <jats:italic>Miscanthus</jats:italic> species was performed with the use of flow cytometry and analysis of the stomatal length. The triploid (2n = 3x = 57) <jats:italic>M. sinensis</jats:italic> ‘Goliath’ and <jats:italic>M. ×giganteus</jats:italic> clones possessed the highest 2C DNA content (8.34 pg and 7.43 pg, respectively). The intermediate 2C-values were found in the nuclei of the diploid (2n = 2x = 38) <jats:italic>M. sinensis</jats:italic> accessions (5.52–5.72 pg), whereas they were the lowest in the diploid (2n = 2x = 38) <jats:italic>M. sacchariflorus</jats:italic> ecotypes (4.58–4.59 pg). The presented study revealed interspecific variation of nuclear DNA content (P&lt;0.01) and therefore allowed for recognition of particular taxa, inter- and intraspecific hybrids and prediction of potential parental components. Moreover, intraspecific genome size variation (P&lt;0.01) was observed in <jats:italic>M. sinensis</jats:italic> cultivars at 3.62%. The values of the stomatal size obtained for the triploid <jats:italic>M. ×giganteus</jats:italic> ‘Great Britain’ (mean 30.70 μm) or ‘Canada’ (mean 29.67 μm) and diploid <jats:italic>M. sinensis</jats:italic> ‘Graziella’ (mean 29.96 μm) did not differ significantly, therefore this parameter is not recommended for ploidy estimation.</jats:p>

Publisher

Biological Commission of the Polish Academy of Sciences – Cracow Branch

Date

2015[2015.01.01 AD - 2015.12.31 AD]

Identifier

eISSN 1898-0295 ; ISSN 0001-5296

References

DoleželJ (1998), Plant genome size estimation by flow cytometry : inter - laboratory comparison, Annals of Botany, 82, 17. ; MaXF (2012), High resolution genetic mapping by genome sequencing reveals genome duplication and tetraploid genetic structure of the diploidMiscanthussinensis ONE, PLoS, 7. ; DoleželJ (2005), Plant DNA flow cytometry and estimation of nuclear genome size, Annals of Botany, 95, 99, doi.org/10.1093/aob/mci005 ; HodkinsonTR (2002), a The use of DNA sequencing ( ITS andtrnL and fluorescentin situhybridization to study allopolyploidMiscanthus, American Journal of Botany, 89, 279, doi.org/10.3732/ajb.89.2.279 ; SwaminathanK (2010), Genomic and small RNA sequencing ofMiscanthus giganteusshows the utility of sorghum as a reference genome sequence forAndropogoneaegrasses, Genome Biology, 11, doi.org/10.1186/gb-2010-11-2-r12 ; DohlemanFG (2009), More productive than maize in the Midwest : how doesMiscanthusdo it, Plant Physiology, 150, 2104, doi.org/10.1104/pp.109.139162 ; JeżowskiS (2008), Yield traits of six clones ofMiscanthusin the first years following planting in Poland, Industrial Crops and Products, 27, 65, doi.org/10.1016/j.indcrop.2007.07.013 ; LiX (2013), Nuclear DNA content variation of threeMiscanthusspecies in China Genes, Genomics, 35, 13. ; CichorzS (2014), Miscanthus : Genetic diversity and genotype identification using ISSR and RAPD markers, Molecular Biotechnology, 56, 911, doi.org/10.1007/s12033-014-9770-0 ; LeitchIJ (2004), Genome downsizing in polyploid plants, Biological Journal of the Linnean Society, 82, 651, doi.org/10.1111/j.1095-8312.2004.00349.x ; PurdySJ (2013), Characterization of chilling - shock responses in four genotypes ofMiscanthusreveals the superior tolerance ofM giganteuscompared withM sinensisandM sacchariflorus, Annals of Botany, 111, 999, doi.org/10.1093/aob/mct059 ; ÖzkanH (2001), Allopolyploidy - induced rapid genome evolution in the wheat group, Plant Cell, 13, 1735, doi.org/10.1105/tpc.13.8.1735 ; NishiwakiA (2011), Discovery of naturalMiscanthus triploid plants in sympatric populations ofMiscanthus sacchariflorusandMiscanthus sinensisin southern Japan, American Journal of Botany, 98, 154, doi.org/10.3732/ajb.1000258 ; Linde (1993), Cytogenetic analysis ofMiscanthus Giganteus , an interspecific hybrid, Hereditas, 119, 297, doi.org/10.1111/j.1601-5223.1993.00297.x ; MeyerMH (1999), MiscanthusAnderss produces viable seed in four USDA hardiness zones of, Journal Environmental Horticulture, 17, 137. ; ZubHW (2011), Key traits for biomass production identified in differentMiscanthusspecies at two harvest dates and, Biomass Bioenergy, 35, 637, doi.org/10.1016/j.biombioe.2010.10.020 ; McLaughlinSB (1998), Evaluating environmental consequences of producing herbaceous crops for bioenergy and, Biomass Bioenergy, 14, 317, doi.org/10.1016/S0961-9534(97)10066-6 ; DoleželJ (2007), Estimation of nuclear DNA content in plants using flow cytometry, Nature Protocols, 2, 2233, doi.org/10.1038/nprot.2007.310 ; HodkinsonTR (2002), Phylogenetics ofMiscanthus , Saccharum and related genera based on DNA sequences from ITS nuclear ribosomal DNA and plastidtrnLintron andtrnL - Fintergenic spacers, Journal of Plant Research, 115, 381, doi.org/10.1007/s10265-002-0049-3 ; HodkinsonTR (2002), Characterization of a genetic resource collection forMiscanthus using AFLP and ISSR PCR, Annals of Botany, 89, 627, doi.org/10.1093/aob/mcf091 ; ZhangJ (2012), Genome size variation in threeSaccharumspecies, Euphytica, 185, 511, doi.org/10.1007/s10681-012-0664-6 ; Clifton (2000), Overwintering problems of newly establishedMiscanthusplantations can be overcome by identifying genotypes with improved rhizome cold tolerance, New Phytologist, 148, 287, doi.org/10.1046/j.1469-8137.2000.00764.x ; QuinnLD (2010), Invasiveness potential ofMiscanthussinensis : implications for bioenergy production in the United States, Global Change Biology Bioenergy, 2, 310, doi.org/10.1111/j.1757-1707.2010.01062.x ; ZubHW (2012), Late emergence and rapid growth maximize the plant development ofMiscanthusclones, BioEnergy Research, 5, 841, doi.org/10.1007/s12155-012-9194-2 ; BennetzenJL (2005), Mechanisms of recent genome size variation in flowering plants, Annals of Botany, 95, 127, doi.org/10.1093/aob/mci008 ; AdatiS (1962), The cytotaxonomy of the genusMiscanthusand its phylogenic status Bulletin of the Faculty of Agriculture Mie, University, 25, 1. ; ZuccoloA (2007), Transposable element distribution , abundance and role in genome size variation in the genusOryza, BMC Evolutionary Biology, 7, 152, doi.org/10.1186/1471-2148-7-152 ; RayburnAL (2004), Documenting intraspecific genome size variation in soybean, Crop Science, 44, 261, doi.org/10.2135/cropsci2004.0261 ; JensenE (2011), Characterization of flowering time diversity inMiscanthusspecies, Global Change Biology Bioenergy, 3, 387, doi.org/10.1111/j.1757-1707.2011.01097.x ; Chramiec (2012), Cytogenetic analysis ofMiscanthus giganteusand its parent forms, Caryologia, 65, 234, doi.org/10.1080/00087114.2012.740192 ; RayburnAL (2005), Genome size analysis of weedyAmaranthusspecies, Crop Science, 45, 2557, doi.org/10.2135/cropsci2005.0163 ; SliwinskaE (2005), Are seeds suitable for flow cytometric estimation of plant genome size, Cytometry PartA, 64, 72, doi.org/10.1002/cyto.a.20122 ; MoonYH (2013), Diversity in ploidy levels and nuclear DNA amounts in KoreanMiscanthusspecies, Euphytica, 193. ; GłowackaK (2010), In vitroinduction of polyploidy by colchicine treatment of shoots and preliminary characterization of induced polyploids in twoMiscanthusspecies, Industrial Crops and Products, 32, 88, doi.org/10.1016/j.indcrop.2010.03.009 ; RayburnAL (2009), Genome size of threeMiscanthusspecies, Plant Molecular Biology Reporter, 27, 184, doi.org/10.1007/s11105-008-0070-3 ; BennettMD (2005), Plant genome size research : a field in focus, Annals of Botany, 95, 1, doi.org/10.1093/aob/mci001 ; HuangH (2013), Genome size variation among and withinCamelliaspecies by using flow cytometric analysis ONE, PLoS, 8. ; DoleželJ (2003), Nuclear DNA content and genome size of trout and human, Cytometry Part A, 51, 127. ; GłowackaK (2015), Genetic variation inMiscanthus giganteusand the importance of estimating genetic distance thresholds for differentiating clones, Global Change Biology Bioenergy, 7, 386, doi.org/10.1111/gcbb.12166 ; TrávnícekP (2013), Substantial genome size variation inTaraxacum stenocephalum, Folia Geobotanica, 48, 271, doi.org/10.1007/s12224-013-9151-7 ; SanMiguelP (1998), Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons, Annals of Botany, 82, 37, doi.org/10.1006/anbo.1998.0746 ; BennettMD (1987), Variation in genomic form in plants and its ecological implications, New Phytologist, 106, 177, doi.org/10.1111/j.1469-8137.1987.tb04689.x ; HeatonEA (2010), Miscanthus : a promising biomass crop, Advances in Botanical Research, 56, 75, doi.org/10.1016/B978-0-12-381518-7.00003-0 ; HernándezP (2001), Microsatellites and RFLP probes from maize are efficient sources of molecular markers for the biomass energy cropMiscanthus, Theoretical and Applied Genetics, 102, 616, doi.org/10.1007/s001220051688 ; ŠmardaP (2010), Understanding intraspecific genome size variation, Preslia, 82, 41. ; OhriD (1998), Genome size variation and plant systematics, Annals of Botany, 82, 75, doi.org/10.1006/anbo.1998.0765

DOI

10.1515/abcsb-2015-0013

×