Szczegóły

Tytuł artykułu

Anisotropy component of electromagnetic force and torque

Tytuł czasopisma

Bulletin of the Polish Academy of Sciences: Technical Sciences

Rocznik

2010

Numer

No 1 March

Autorzy publikacji

Wydział PAN

Nauki Techniczne

Wydawca

Polish Academy of Sciences

Data

2010

Identyfikator

ISSN 0239-7528, eISSN 2300-1917

Referencje

Bolte E. (2002), Analysis of steady-state of high speed induction motors with exterior rotor and conductive layer on the slotted stator, null, 1, 19. ; Landau L. (1951), The Classical Theory of Fields. ; Jackson J. (1999), Classical Electrodynamics. ; Binns K. (1992), The Analytical and Numerical Solution of Electric and Magnetic Fields. ; Benhama A. (2000), Virtual work approach the computation of magnetic force distribution from finite element field solutions, IEEE Proc. Electr. Power Appl, 147, 6, 437. ; Coulomb J. (1984), Finite element implementation of virtual work principle to magnetic or electric force and torque computation, IEEE Transactions on Magnetics, 20, 5, 1894. ; Reichert K. (1996), Problems and trends in force and torque calculations by means of FE-methods, null, 1, 1926. ; Arkkio A. (1987), Analysis of induction motors based on the numerical solution of the magnetic field and circuit equations, Acta Polytechnica Scandinavica, 56, 95. ; Carpenter C. (1959), Surface-integral methods of calculating forces on magnetized iron parts, Inst. Electric Engineering Monograph, 342, 19. ; Coulomb J. (1983), A methodology for the determination of total electromechanical quantities from a finite element analysis and its application to the evaluation of magnetic forces, torques and stiffness, IEEE Transactions on Magnetics, 16, 6, 2514. ; Henrotte F. (2004), Handbook for the computation of electromagnetic forces in a continuous medium, Newsletter Int. Compumag Society, 11, 2, 3. ; Bossavitt A. (2004), Forces inside a magnet, Newsletter Int. Compumag Society, 11, 1, 4. ; Bossavit A. (1990), Forces in magnetostatics and their computation, J. Applied Physics, 67, 9, 5812. ; Kameari A. (1993), Local force calculation in 3D FEM with edge elements, Int. J. Applied Electromagnetics in Materials, 3, 231. ; Ren Z. (1992), Local force computation in deformable bodies using edge elements, IEEE Transactions on Magnetics, 28, 2, 1212. ; Henrotte F. (2004), Electromagnetic force density in a ferromagnetic material, IEEE Transaction on Magnetics, 40, 2, 553. ; Vandevelde L. (2002), Computation of deformation of ferromagnetic material, IEE Proc. Sci. Meas. Technol, 149, 5, 222. ; Kim D.-H. (2005), Efficient force calculations based on continuum sensitivity analysis, IEEE Transactions on Magnetics, 41, 5, 1404. ; Li M. (2008), A sensitivity approach to force calculation in electrostatic MEMS devices, IEEE Transactions on Magnetics, 44, 6, 315. ; Shyu R. (2005), Hard magnetic material for perpendicular magnetic anisotropy field in electromagnetic actuator fabrication, Progress in Electromagnetics Research Symposium, 1, 96. ; Tavner P. (2004), Cross-magnetisation effects in electrical machines, IEE Proc. Electr. Power Appl, 151, 3, 249. ; H. Vande Sande (2002), Comparison of neutral network and polynomial models for the approximation of nonlinear and anisotropic ferromagnetic materials, IEE Proc. Sci. Meas. Technol, 149, 5, 214. ; Lindell I. (2004), Electrostatic image theory for an anisotropic boundary, IEEE Proc. Sci. Meas. Technol, 153, 3, 188. ; Zirka S. (2002), Modelling losses in electrical steel laminations, IEE Proc. Sci. Meas. Technol, 149, 5, 218. ; Benda O. (1969), Torque exerted on anisotropic magnetic medium by electromagnetic wave, IEEE Transaction on Magnetics, 5, 4, 921. ; Kogan V. (1990), Forces upon vortices in anisotropic superconductors, Physical Review Letters, 64, 18, 2192. ; Fujioka T. (2002), A new anisotropic correction to the formula of force and torque on materials, null, 1, 23. ; Spałek D. (1999), Anisotropy component of electromagnetic torque in electrical machines, Archives of Electrical Engineering, 1, 109. ; Holm S. (2002), Analytical calculation of the magnetic field in electrical machines due to the current density in an airgap winding, null, 20, 17. ; Spałek D. (1999), Fast analytical model of induction motor for approaching rotor eccentricity, COMPEL Int. J. for Computation Mathematics in Electrical & Electronics Engineering, 18, 4, 570. ; Workshop TEAM <a target="_blank" href='http://ics.ec-lyon.fr/team.html'>http://ics.ec-lyon.fr/team.html</a> ; Spałek D. (null), Spherical induction motor with anisotropic rotor - analytical solutions for electromagnetic field distribution, electromagnetic torques and power losses, Int. Compumag Society. Testing Electromagnetic Analysis Methods, 34. ; Spałek D. (2004), Analytical electromagnetic field and forces calculation for linear, cylindrical and spherical electromechanical converters, Bull. Pol. Ac.: Tech, 52, 3, 239. ; Simonyi K. (1972), Physikalische Elektronik. ; Gąsiorek S. (1987), Ferrites, Outline of Properties and Technology. ; Zhu Z. (2001), Hallbach permanent magnet machines and applications review, IEE Proc. Sci. Meas. Technol, 148, 4, 299. ; Janaszek M. (2006), New method of direct reactive energy and torque control for permanent magnet synchronous motor, Bull. Pol. Ac.: Tech, 54, 3, 299. ; Gradsztajn I. (1962), Tables of Integrals, Sums, Series and Terms. ; Spalek D. (2007), Synchronous motors linear, cylindrical and spherical with permanent magnets or excited, Bull. Pol. Ac.: Tech, 55, 3, 299. ; Morales R. (2006), Predictive torque and flux control for the synchronous reluctance machine, Bull. Pol. Ac.: Tech, 54, 3, 271.

DOI

10.2478/v10175-010-0011-9

×