Details

Title

Advanced microstructure diagnostics and interface analysis of modern materials by high-resolution analytical transmission electron microscopy

Journal title

Bulletin of the Polish Academy of Sciences: Technical Sciences

Yearbook

2010

Numer

No 2 June

Publication authors

Divisions of PAS

Nauki Techniczne

Publisher

Polish Academy of Sciences

Date

2010

Identifier

ISSN 0239-7528, eISSN 2300-1917

References

Häusler I. (2008), Composition analysis of ternary semiconductors by combined application of conventional TEM and HRTEM, Phys. Stat. Sol, A 205, 2598. ; Lichte H. (2007), Electron holography: Applications to materials questions, Annu. Rev. Mater. Res, 37, 539. ; Coene W. (1996), Maximum-likelihood method for focus-variation image reconstruction in high-resolution electron microscopy, Ultramicroscopy, 64, 109. ; Kret S. (2001), Extracting quantitative information from high resolution electron microscopy, Phys. Stat. Sol, B 227, 247, doi.org/10.1002/1521-3951(200109)227:1<247::AID-PSSB247>3.0.CO;2-F ; Vincent R. (1994), Double conical beam-rocking system for measurement of integrated electron diffraction intensities, Ultramicroscopy, 53, 271. ; Tanaka M. (1980), Large-angle convergent-beam electron diffraction, J. Electron Microsc, 29, 408. ; Morniroli J. (2006), CBED and LACBED characterization of crystal defects, J. Microsc, 223, 240. ; Muller D. (2008), Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy, Science, 319, 1073. ; Petford-Long A. (2005), Magnetic microscopy of nanostructures, 67. ; Lehmann M. (2005), Electron holographic material analysis at atomic dimensions, Crystal Research and Technology, 40, 149. ; Midgley P. (2003), 3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography, Ultramicroscopy, 96, 413. ; Schumacher G. (2007), Temperature dependence of lattice distortion in strongly creep-deformed single crystal superalloy SC16, Materials Science Forum, 539-543, 3048. ; Rosenauer A. (1998), Composition evaluation by lattice fringe analysis, Ultramicroscopy, 72, 121. ; Blumstengel S. (2008), Interface formation and electronic structure of sexithiophene on ZnO, Appl. Phys. Lett, 92, 193303. ; Srikant V. (1997), Mosaic structure in epitaxial thin films having large lattice mismatch, J. Appl. Phys, 82, 4286. ; Hirsch P. (1977), Electron microscopy of thin crystals, Library of Congress Cataloging in Publication Data, 1, 176. ; Reentilä O. (2008), Effect of the AIN nucleation layer growth on AlN material quality, J. Cryst. Growth, 310, 4932. ; Hull D. (1984), Introduction to dislocations, Int. Series on Materials Science and Technology, 37, 114. ; Stampfl C. (1998), Energetics and electronic structure of stacking faults in AlN, GaN, and InN, Phys. Rev, B 57, 52. ; Hellman E. (1998), The polarity of GaN: a critical review, MRS Internet J. Nitride Res, 3, 1. ; Jasinski J. (2003), Inversion domains in AlN grown on (0001) sapphire, Appl. Phys. Lett, 83, 2811. ; Grzegory I. (2007), Crystallization of low dislocation density GaN by high-pressure solution and HVPE methods, J. Cryst. Growth, 300, 17. ; Maruska H. (2003), Free-standing non-polar gallium nitride substrates, Opto-Electronics Rev, 11, 7. ; Richter E. (2006), Freestanding two-inch c-plane GaN layers grown on (100) γ-lithium aluminium oxide by hydride vapour phase epitaxy, Phys. Stat. Sol, C 3, 1439, doi.org/10.1002/pssc.200565278 ; Liliental-Weber Z. (2004), GaN growth in polar and non-polar direction, Opto-Electronics Rev, 12, 4, 339. ; Mogilatenko A. (2007), Mechanism of LiAlO<sub>2</sub> decomposition during the GaN growth on (100) γ-LiAlO<sub>2</sub>, J. Appl. Phys, 102, 023519. ; Hosoi J. (1981), Measurement of partial specific thickness (net thickness) of critical-point-dried cultured fibroblast by energy analysis, Ultramicrocopy, 7, 147. ; Mogilatenko A. (2008), TEM study of c-plane layers grown on γ-LiAlO<sub>2</sub>(100), Phys. Stat. Sol, C 5, 3712. ; Blaha P. (1990), Full-potential, linearized augmented plane wave programs for crystalline systems, Comput. Phys. Commun, 59, 399. ; Mauchamp V. (2006), Ab initio simulation of the electron energy-loss near-edge structures at the Li K edge in Li, Li<sub>2</sub>O, and LiMn<sub>2</sub>O<sub>4</sub>, Phys. Rev, B 74, 115106, doi.org/10.1103/PhysRevB.74.115106 ; Shono T. (2000), Observation of magnetic domain structure in a ferromagnetic semiconductor (Ga, Mn)As with a scanning Hall probe microscope, Appl. Phys. Lett, 77, 9, 1363. ; Jiles D. (1998), Introduction to Magnetism and Magnetic Materials. ; McHenry M. (1999), Amorphous and nanocrystalline materials for applications as soft magnets, Progress in Materials Science, 44, 4, 291. ; Herzer G. (1995), Soft magnetic nanocrystalline materials, Scripta Metallurgica et Materiala, 33, 10-11, 1741. ; Rose H. (2009), Historical aspects of aberration correction, J. Electron Microsc, 58, 3, 77. ; Smith D. (2008), Development of aberration-corrected electron microscopy, Microscopy and Microanalysis, 14, 2. ; Haider M. (1998), Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope, J. Electron Microsc, 47, 395. ; Dahmen U. (2009), Background, status and future of the transmission electron aberration-corrected microscope project, Phil. Trans. R. Soc, A 367, 3795, doi.org/10.1098/rsta.2009.0094 ; Kabius B. (2009), First application of C<sub><i>c</i></sub>-corrected imaging for high-resolution and energy-filtered TEM, J. Electron Micr, 1-9, doi.org/10.1093/jmicro/dfp021 ; Kaiser U. (2009), Microscopy at the bottom, null, 3, 1. ; LaGrange Th. (2008), Nanosecond time-resolved investigations using in situ of dynamic transmission electron microscope (DTEM), Ultramicroscopy, 108, 1441.

DOI

10.2478/v10175-010-0023-5

×