Szczegóły

Tytuł artykułu

Terahertz photomixer

Tytuł czasopisma

Bulletin of the Polish Academy of Sciences: Technical Sciences

Rocznik

2010

Numer

No 4 December

Autorzy publikacji

Wydział PAN

Nauki Techniczne

Wydawca

Polish Academy of Sciences

Data

2010

Identyfikator

ISSN 0239-7528, eISSN 2300-1917

Referencje

Byrd J. (2002), Observation of broadband self-amplified spontaneous coherent terahertz synchrotron radiation in a storage ring, Phys. Rev. Lett, 89, 224801, doi.org/10.1103/PhysRevLett.89.224801 ; Byrd J. (2004), CIRCE: a dedicated storage ring for coherent THz synchrotron radiation, Infrared Physics & Technology, 45, 325, doi.org/10.1016/j.infrared.2004.01.017 ; Karantzoulis E. (2008), Coherent THz radiation at ELETTRA, null, 1. ; Tecimer M. (2006), A designed study of a FIR/THZ FEL for high magnetic field, null, 1. ; Gorshunov B. (2005), Terahertz BWOspectrosopy, Int. J. Infrared and Millimeter Waves, 26, 9, 1217, doi.org/10.1007/s10762-005-7600-y ; Kube G. (2008), Smith-Purcell radiation in view of particle beam diagnostic, null, 1. ; Mukherjee M. (2008), Photo-illuminated InP Terahertz IMPATT device, null, 1. ; Karpowicz N. (2005), Compact continuous-wave subterahertz system for inspection applications, Appl. Phys. Lett, 86, 054105, doi.org/10.1063/1.1856701 ; Zerbetto S. (2005), Frequency measurements of 3 to 11 THz laser lines of CH3OH, Int. J. Infrared and Millimeter Waves, 17, 6, 1049, doi.org/10.1007/BF02101436 ; Mittleman D. (2003), Sensing with THz Radiation, doi.org/10.1007/978-3-540-45601-8 ; Brown E. (1994), Photomixing up to 3.8 THz in low-temperature-grown GaAs, Appl. Phys. Lett, 66, 285, doi.org/10.1063/1.113519 ; Kosterev A. (2001), Chemical sensors using quantum cascade lasers, Laser Physics, 11, 39. ; Kosterev A. (2002), Chemical sensors based on quantum cascade lasers, IEEE J. Quant. Electron, QE-38, 6, 582, doi.org/10.1109/JQE.2002.1005408 ; Wysocki G. (2008), Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing, Appl. Physics B: Lasers and Optics, 92, 305, doi.org/10.1007/s00340-008-3047-x ; Belkin M. (2008), Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation, Appl. Physics Letters, 92, 201101, doi.org/10.1063/1.2919051 ; Sands D. (2004), Diode Lasers, doi.org/10.1201/9781420056990 ; Klehr A. (2008), High-power monolithic two-mode DFB laser diodes for the generation of THz radiation, IEEE J. Sel. Top. Quant. Electron, 14, 2, 289, doi.org/10.1109/JSTQE.2007.913119 ; Kiyomi S. (2005), Terahertz optoelectronics, Series: Topics in Applied Physics, 97, 1. ; Kordoš P. (2007), Performance optimization of GaAs-based photomixers as sources of THz radiation, Appl. Phys, A 87, 563, doi.org/10.1007/s00339-007-3909-9 ; Auston D. (1984), Picosecond photoconductive Hertzian dipoles, Appl. Phys. Lett, 45, 284, doi.org/10.1063/1.95174 ; Pfeiffer Th. (1986), Picosecond optoelectronic switches, Physica Scripta, T13, 100, doi.org/10.1088/0031-8949/1986/T13/015 ; Smith P. (1988), Subpicosecond photoconducting dipole antennas, IEEE J. Quant. Electron, QE-24, 2, 255, doi.org/10.1109/3.121 ; Plinski E. (2009), Terahertz optical mixer design, Phot. Lett. Pol, 1, 1, 28. ; Willer U. (2007), A novel THz source based on a two-color Nd:LSB microchip-laser and a LT-GaAsSb photomixer, Appl. Phys. B: Lasers and Optics, 87, 1, 13, doi.org/10.1007/s00340-006-2492-7 ; Hoffmann S. (2004), Four-wave mixing and direct terahertz emission with two-color semiconductor lasers, Appl. Phys. Lett, 84, 18, 3585, doi.org/10.1063/1.1737486 ; Steinmetz T. (2008), Laser frequency combs for astronomical observations, Science, 321, 1335, doi.org/10.1126/science.1161030 ; Tani M. (2005), Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers, Sem. Sc. Tech, 20. ; Scheller M. (2009), Terahertz quasi time domain spectroscopy, Opt. Expr, 17, 17723, doi.org/10.1364/OE.17.017723 ; Shibuya K. (2007), Compact and inexpensive continuous-wave subterahertz imaging system with a fiber-coupled multimode laser diode, Appl. Phys. Lett, 90, 161127, doi.org/10.1063/1.2730739 ; Suzuki T. (2003), Dual-color operation of a laser diode under current and temperature control, Appl. Opt, 42, 33, 6640, doi.org/10.1364/AO.42.006640 ; Belkin M. (2008), Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation, Appl. Phys. Lett, 92, 201101. ; Gong Y. (2007), Terahertz spectroscopy technology trend using 1550-nm ultrafast fiber laser, Micr. Opt. Tech. Lett, 49, 439, doi.org/10.1002/mop.22165 ; Mouret G. (2007), THz media characterization by means of coherent homodyne detection, results and potential applications, Appl. Phys. B: Lasers and Optics, 89, 2-3, 395, doi.org/10.1007/s00340-007-2785-5 ; Morikawa O. (1999), Sub-THz spectroscopic system using a multimode laser diode and photoconductive antenna, Appl. Phys. Lett, 75, 3772, doi.org/10.1063/1.125451 ; Latkowski S. (2008), Terahertz wave generation from a dc-biased multimode laser, Appl. Phys. Lett, 92, 081109, doi.org/10.1063/1.2884525 ; Latkowski S. (2008), Investigation on the origin of terahertz waves generated by dcbiased multimode semiconductor lasers at room temperature, Appl. Phys. Lett, 93, 241110, doi.org/10.1063/1.3050455 ; Kim N. (2009), Monolithic dual-mode distributed feedback semiconductor laser for tunable continuous-wave terahertz generation, Opt. Expr, 17, 13851, doi.org/10.1364/OE.17.013851 ; Witkowski J. (2009), Fourier transform in THz measurements of refractive index, null, 1. ; Jastrow C. (2008), 300 GHz transmission system, Electr. Lett, 44, 3, 214, doi.org/10.1049/el:20083359 ; Guo Q. (2007), Observation of ultra-broadband terahertz emission from ZnTe films grown by metaloganic vapor epitaxy, Solid State Communications, 141, 188, doi.org/10.1016/j.ssc.2006.10.023

DOI

10.2478/v10175-010-0044-0

×