Szczegóły

Tytuł artykułu

Fibre lasers - conditioning constructional and technological

Tytuł czasopisma

Bulletin of the Polish Academy of Sciences: Technical Sciences

Rocznik

2010

Numer

No 4 December

Autorzy publikacji

Wydział PAN

Nauki Techniczne

Wydawca

Polish Academy of Sciences

Data

2010

Identyfikator

ISSN 0239-7528, eISSN 2300-1917

Referencje

Snitzer E. (1961), Proposed fibre cavities for optical masers, J. Appl. Phys, 32, 36, doi.org/10.1063/1.1735955 ; Snitzer E. (1961), Optical maser action of Nd<sup>3+</sup> in a barium crown glass, Phys. Rev. Lett, 7, 444, doi.org/10.1103/PhysRevLett.7.444 ; Myslinski P. (1992), High-power Q-switched erbium doped fiber laser, IEEE J. Quantum Electron, 28, 371, doi.org/10.1109/3.119537 ; Limpert J. (2002), 100-W average-power, high-energy nanosecond fiber amplifier, Appl. Phys, B 75, 477, doi.org/10.1007/s00340-002-1018-1 ; Becker P. (1999), Erbium-doped Fiber Amplifiers: Fundamentals and Technology. ; Zenteno L. (1993), High-power double-clad fiber lasers, IEEE J. Lightwave Technol, 11, 1435, doi.org/10.1109/50.241933 ; Larose G. (1995), Actively Q-switched fiber laser with ASE limiting saturable absorber, Proc. Int. Conf. on Lasers, 1, 197. ; Bajarklev A. (1993), Optical Fiber Amplifiers: Design and System Applications. ; Stolen H. (1980), Nonlinearity in fiber transmission, Proc IEEE, 68, 1232, doi.org/10.1109/PROC.1980.11837 ; Agrawal G. (2001), Nonlinear Fiber Optics. ; Smith R. (1972), Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering, Appl. Opt, 11, 2489, doi.org/10.1364/AO.11.002489 ; Stolen H. (1989), Raman response function of silica-core fibers, J. Opt. Soc. Am, B 6, 1159. ; Cotter D. (1983), Stimulated Brillouin scattering in monomode optical fiber, Opt. Commun, 4, 10, doi.org/10.1515/JOC.1983.4.1.10 ; Weber M. (1986), Handbook of Laser Science and Technology, Optical Materials, 3. ; Tunnermann A. (2005), Status and perspectives of fiber lasers and amplifiers, null. ; Barannikov Y. (2004), 250W, single-mode, CW, linearly-polarized fiber source in Yb wavelength range, null. ; Rustad G. (1996), Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion, IEEE J. Quantum Electronics, 32, 9, 1645, doi.org/10.1109/3.535370 ; Yahel E. (2006), Modeling and optimalization of high-power Nd<sup>3+</sup>-Yb<sup>3+</sup> codoped fiber lasers, J. Lightwave Technology, 24, 3, 1601, doi.org/10.1109/JLT.2005.863324 ; Tunnerman A. (2005), Status and Perspectives of Fiber Lasers and Amplifiers. ; Limpert J. (2002), 150 W Nd<sup>3+</sup>: Yb<sup>3+</sup> codoped fiber laser at 1,1 μm, Proc. Conf. Lasers and Electronics, 1, 590. ; Choi Y. (2000), Emission properties of the Er3+: 4I11/2 → 4I13/2 transition in Er3+- and Er3+/Tm3+ - doped Ge-Ga-As-S glasses, Elsevier J. Non-Crystalline Solids, 19, 278. ; Jeong H. (2003), Characterization of broadband amplified spontaneous emission from an Er<sup>3+</sup>-Tm<sup>3+</sup> co-doped silica fiber, Elsevier Chemical Physics Letters, 367, 507, doi.org/10.1016/S0009-2614(02)01802-X ; Sun H. (2005), Up-conversion luminescence analysis in ytterbium-sensitized erbium-doped oxide-halide tellurite and germanate-niobic-lead glasses, Elsevier Spectrochimica Acta, A 62, 1000, doi.org/10.1016/j.saa.2005.04.021 ; <a target="_blank" href='http://www.photonics.com/content/spectra/2007/October/research/89210.aspx'>http://www.photonics.com/content/spectra/2007/October/research/89210.aspx</a> ; Dominic V. (2004), 150W Fiber laser, null, 1. ; <a target="_blank" href='http://www.ipgphotonics.com/products_2micron_lasers_cw_tlrseries.htm'>www.ipgphotonics.com/products_2micron_lasers_cw_tlrseries.htm</a> ; Limpert J. (2004), Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier, Opt. Express, 12, 1313, doi.org/10.1364/OPEX.12.001313 ; Shcherbakov E. (2005), New achievements in development of superpower industrial fiber lasers and their applications, null. ; Limpert J. (2003), Power and energy scaling of fiber laser systems based on ytterbium-doped large-mode-area fibers, Advances in Fiber Lasers, Proc. SPIE, 4974, 135, doi.org/10.1117/12.484165 ; Wang P. (2004), Helical-core ytterbium-doped fibre laser, Electronics Letters, 21, 1325, doi.org/10.1049/el:20046623 ; Jiang Z. (2005), Mode-area scaling of helicalcore dual-clad fiber laser and amplifiers, null, 1. ; Feng L. (2007), Optical transitions and up-conversion emission of Tm<sup>3+-</sup>singly doped and Tm<sup>3+</sup>/Yb<sup>3+-</sup>codoped oxyfluoride glasses, J. Alloys and Compounds, 436, 272, doi.org/10.1016/j.jallcom.2006.07.022 ; González-Pérez S. (2007), Temperature dependence of Nd<sup>3+</sup> → Yb<sup>3+</sup> energy transfer processes in co-doped oxyfluoride glass ceramics, J. Non-Cryst. Solids, 353, 1951, doi.org/10.1016/j.jnoncrysol.2007.01.059 ; Desfarges-Berthelemot A. (2006), Coherent combining of fiber lasers, C. R. Physique, 7, 244, doi.org/10.1016/j.crhy.2006.01.019 ; Chen Z. (2008), Mutual injectionlocking and coherent combining of two individual fiber lasers, IEEE J. Quantum Electronics, 44, 6, 515, doi.org/10.1109/JQE.2008.917966 ; Kochanowicz M. (2009), Coherent beam combining of active multicore optical fiber, null, 750. ; Jeong H. (2003), Characterization of broadband amplified spontaneous emission from an Er<sup>3+</sup>-Tm<sup>3+</sup> co-doped silica fiber, Elsevier Chemical Physics Letters, 367, 507. ; J. Świderski, M. Skórczakowski, A. Zając, and S. Kowalczyk, "Two cascade optical waveguide system of MOPFA type generating pulses of variable duration at the repetition frequency within the range of 50-500 kHz", <i>Messages</i> 9STL, CD-ROM (2009), (in Polish).

DOI

10.2478/v10175-010-0048-9

×