Szczegóły

Tytuł artykułu

Generalization of the modulating functions method into the fractional differential equations

Tytuł czasopisma

Bulletin of the Polish Academy of Sciences: Technical Sciences

Rocznik

2010

Numer

No 4 December

Autorzy publikacji

Wydział PAN

Nauki Techniczne

Wydawca

Polish Academy of Sciences

Data

2010

Identyfikator

ISSN 0239-7528, eISSN 2300-1917

Referencje

V. Maletinsky, "l-i-p Identifikation kontinuierlicher dynamischer prozesse", <i>PhD Thesis</i>, ETH Zurich, Zurich, 1978. ; Maletinsky V. (1979), Identification of continuous dynamical systems with spline type modulating function method, null, 1, 275. ; Co T. (1990), System identification using modulating functions and fast Fourier transforms, Computers Chem. Eng, 14, 1051, doi.org/10.1016/0098-1354(90)85002-R ; Preisig H. (1993), Theory and application of the modulating function method-I. Review and theory of the method and theory of spline-type modulating functions I-III, Computers Chem. Eng, 17, 1, doi.org/10.1016/0098-1354(93)80001-4 ; Shinbrot M. (1954), On the analysis of linear and nonlinear dynamic systems from transient-response data, National Advisory Committee for Aeronautics NACA Technical Note, 3288. ; Shinbrot M. (1957), On the analysis of linear and nonlinear systems, Trans. ASME, 1, 547. ; Podlubny I. (1999), Fractional Differential Equations. ; Janiczek T. (2007), Equivalent model of modified bismuth oxides described by fractional derivatives, Key Engineering Materials, 336-338, 676, doi.org/10.4028/www.scientific.net/KEM.336-338.676 ; Janiczek T. (2007), Implementation of fractional differential calculus to identify models of fractional systems, PAK, 9, 194. ; Kaczorek T. (2008), Practical stability of positive fractional discretetime linear systems, Bull. Pol. Ac.: Tech, 56, 313. ; Nowak-Woźny D. (2009), Fractional electrical model for modified bismuth oxide, J. Electrostatics, 67, 18, doi.org/10.1016/j.elstat.2008.10.001 ; Camko S. (1987), Fractional integrals and derivatives and some of their applications, null, 1. ; Miller K. (1993), An Introduction to the Fractional Calculus and Fractional Differential Equations. ; Oldham K. (1974), The Fractional Calculus. ; Kilbas A. (2006), Theory and Applications of Fractional Differential Equation.

DOI

10.2478/v10175-010-0060-0

×