Details

Title

Numerical methods of solving equations of hydrodynamics from perspectives of the code FLASH

Journal title

Bulletin of the Polish Academy of Sciences: Technical Sciences

Yearbook

2011

Numer

No 1 March

Publication authors

Divisions of PAS

Nauki Techniczne

Publisher

Polish Academy of Sciences

Date

2011

Identifier

ISSN 0239-7528, eISSN 2300-1917

References

Trangenstein J. (2008), Numerical Solution of Hyperbolic Partial Differential Equations. ; J. von Neumann (1950), A method for the numerical calculation of hydrodynamic shocks, J. Appl. Phys, 21, 232, doi.org/10.1063/1.1699639 ; Stone J. (1992), ZEUS-2D: a radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. II. The magnetohydrodynamic algorithms and tests", Astrophys, J. Suppl. Ser, 80, 791, doi.org/10.1086/191681 ; Murawski K. (1996), Numerical modeling of the solar wind interaction with Venus, Planet. Space Sci, 44, 3, 243, doi.org/10.1016/0032-0633(95)00108-5 ; Godunov S. (1959), A difference scheme for numerical solution of discontinuos solution of hydrodynamic equations, Math. Sb, 47, 271. ; Lee D. (2009), An unsplit staggered mesh scheme for multidimensional magnetohydrodynamics, J. Comput. Phys, 228, 4, 952, doi.org/10.1016/j.jcp.2008.08.026 ; J.J. Quirk, "An adaptive grid algorithm for computational shock hydrodynamics", <i>PhD Thesis</i>, College of Aeronautics, Cranfield Institute of Technology, Cranfield, 1991. ; Toro E. (2009), Riemann Solvers and Numerical Methods for Fluid Dynamics, doi.org/10.1007/b79761 ; LeVeque R. (1990), Numerical Methods for Conservation Laws. ; Harten A. (1983), On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev, 25, 1, 35, doi.org/10.1137/1025002 ; Einfeld B. (1988), On Godunov-type methods for gas dynamics, SIAM J. Num. Anal, 25, 2, 294, doi.org/10.1137/0725021 ; Roe P. (1981), Approximate Riemann solvers, parameter vectors and difference schemes, J. Comp. Phys, 43, 357, doi.org/10.1016/0021-9991(81)90128-5 ; Aslan N. (1996), Two-dimensional solutions of MHD equations with an adapted Roe method, Int. J. Numer. Meth. Fluids, 23, 11, 1211, doi.org/10.1002/(SICI)1097-0363(19961215)23:11<1211::AID-FLD469>3.0.CO;2-5 ; Einfeld B. (1991), On Godunov-type methods near low densities, J. Comp. Phys, 92, 2, 273, doi.org/10.1016/0021-9991(91)90211-3 ; Donat R. (1996), Capturing shock reflections: an improved flux formula, J. Comp. Phys, 125, 1, 42, doi.org/10.1006/jcph.1996.0078 ; Jin S. (1995), The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Comm. Pure Appl. Math, 48, 3, 235, doi.org/10.1002/cpa.3160480303 ; LeVeque R. (2002), Finite-volume Methods for Hyperbolic Problems, doi.org/10.1017/CBO9780511791253 ; LeVeque R. (2001), A class of approximate Riemann solvers and their relation to relaxation schemes, J. Comput. Phys, 172, 2, 572, doi.org/10.1006/jcph.2001.6838 ; Kolgan V. (1972), Application of the minimum-derivative principle in the construction of finite-diverence schemes for numerical analysis of discontinuous solutions in gas dynamics, Uch. Zap. TsaGI, 3, 6, 68. ; B. van Leer (1979), Towards the ultimate conservative difference scheme. V-A second-order sequel to Godunov's method, J. Comp. Phys, 32, 101, doi.org/10.1016/0021-9991(79)90145-1 ; Roe P. (1982), Sonic flux formulae, SIAM J. Sci. Stat. Comput, 13, 611. ; Harten A. (1989), ENO schemes with subcell resolution, J. Comp. Phys, 83, 148, doi.org/10.1016/0021-9991(89)90226-X ; Woodward P. (1984), The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comp. Phys, 54, 115, doi.org/10.1016/0021-9991(84)90142-6 ; Murawski K. (1994), Operator splitting for multidimensional magnetohydrodynamics, J. Geophys. Res, 99, A6, 11569, doi.org/10.1029/94JA00439 ; Strang G. (1968), On the construction and comparison of difference schemes, SIAM J. Num. Anal, 5, 3, 506, doi.org/10.1137/0705041 ; Colella P. (1990), Multidimensional upwind methods for hyperbolic conservation laws, J. Comp. Phys, 87, 171, doi.org/10.1016/0021-9991(90)90233-Q ; Berger M. (1989), Local adaptive mesh refinement for shock hydrodynamics, J. Comp. Phys, 82, 64, doi.org/10.1016/0021-9991(89)90035-1 ; Bell J. (1994), Three dimensional adaptive mesh refinement for hyperbolic conservation laws, SIAM J. Sci. Comput, 15, 1, 127, doi.org/10.1137/0915008 ; Martin D. (2000), A cell-centered adaptive projection method for the incompressible Euler equations, J. Comp. Phys, 163, 2, 271, doi.org/10.1006/jcph.2000.6575 ; DeZeeuw D. (1993), An adaptively refined Cartesian mesh solver for the Euler equations, J. Comp. Phys, 104, 56, doi.org/10.1006/jcph.1993.1007 ; Quirk J. (1994), A cartesian grid approach with hierarchical refinement for compressible flows, Computers and Fluids, 23, 1, 125. ; Trepanier J.-Y. (1993), An implicit flux- difference splitting method for solving the Euler equations on adaptive traingular grids, Int. J. Num. Meth. Heat Fluid Flow, 3, 1, 63, doi.org/10.1108/eb017516 ; Arendt S. (1993), Vorticity in stratified fluids. I. General formulation, Geophys. Astrophys. Fluid Dynamics, 68, 1, 59, doi.org/10.1080/03091929308203562 ; Hollweg J. (1982), On the origin of solar spicules, Astrophys. J, 257, 345, doi.org/10.1086/159993

DOI

10.2478/v10175-011-0012-3

×