Szczegóły

Tytuł artykułu

Nanotechnology for biomedical applications - enhancement of photodynamic activity by nanomaterials

Tytuł czasopisma

Bulletin of the Polish Academy of Sciences: Technical Sciences

Rocznik

2011

Numer

No 3 September

Autorzy publikacji

Wydział PAN

Nauki Techniczne

Wydawca

Polish Academy of Sciences

Data

2011

Identyfikator

ISSN 0239-7528, eISSN 2300-1917

Referencje

Farokhzad O. (2006), Nanomedicine: developing smarter therapeutic and diagnostic modalities, Adv. Drug Del. Rev, 58, 1456, doi.org/10.1016/j.addr.2006.09.011 ; Liu Y. (2007), Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles, Int. J. Cancer, 120, 2527, doi.org/10.1002/ijc.22709 ; Peer D. (2007), Nanocarriers as an emerging platform for cancer therapy, Nat. Nanotechnol, 2, 751, doi.org/10.1038/nnano.2007.387 ; Orroner D. (2009), Small solutions for big problems: the application of nanoparticle to brain tumor diagnosis and therapy, Clinical Pharmacol. Ther, 85, 5, 531, doi.org/10.1038/clpt.2008.296 ; Zhang L. (2008), Nanoparticles in medicine: therapeutic applications and developments, Clinical Pharmacol. Ther, 83, 5, 761, doi.org/10.1038/sj.clpt.6100400 ; Szefner G. (2009), Modeling of strains and stress of material nanostructures, Bull. Pol. Ac.: Tech, 57, 1, 41. ; Ferrari M. (2005), Cancer nanotechnology: opportunities and challenges, Nat. Rev. Cancer, 5, 161, doi.org/10.1038/nrc1566 ; Eaton M. (2007), Nanomedicine: industry-wise research, Nature Materials, 6, 251, doi.org/10.1038/nmat1879 ; Lan Y. (2009), Nanothermometer using single crystal silver nanospheres, Adv. Mater, 21, 1. ; Bawa R. (2008), Nanoparticle-based therapeutics in humans: a survey, Nanotech. Law Bus, 5, 2, 135. ; Wagner V. (2006), The emerging nanomedicine landscape, Nat. Biotech, 24, 1211, doi.org/10.1038/nbt1006-1211 ; Knez M. (2008), ALD - a versalite tool for nanostructuring, Material Matters, 3, 2, 28. ; Lopinski G. (2008), Molecular monolayers on silicon surfaces, Material Matters, 3, 2, 38. ; Zdyrko B. (2008), Universal platform for modification employing grafted polymer layers, Material Matters, 3, 2, 44. ; Jaworek A. (2009), Electrostatic depositionof nanothin films on metal substrate, Bull. Pol. Ac.: Tech, 57, 1, 63. ; Fierke M. (2008), Form to function: molding porous materials in three dimensions by colloidal crystal templating, Material Matters, 3, 1, 10. ; Peng G. (2009), Diagnosing lung cancer in exhaled breath using gold nanoparticles, Nat. Nanotechnol, 4, 669, doi.org/10.1038/nnano.2009.235 ; Mazzone P. (2009), Sniffing out lung cancer, Nat. Nanotechnol, 4, 621, doi.org/10.1038/nnano.2009.285 ; Joshi A. (2008), Nanotube-assisted protein deactivation, Nat. Nanotechnol, 3, 41, doi.org/10.1038/nnano.2007.386 ; Mulder W. (2008), Multimodality nanotracers for cardiovascular applications, Nat. Clin. Pract. Cardiovasc. Med, 5, 103, doi.org/10.1038/ncpcardio1242 ; Bredell M. (2010), The application and challenges of clinical PD-PDT in the head and neck region: a short review, J. Photochem. Photobiol. B, 101, 3, 185, doi.org/10.1016/j.jphotobiol.2010.07.002 ; <i>Photodynamic Medicine</i> <a target="_blank" href='http://www.eppm-photomedicine.org/'>http://www.eppm-photomedicine.org/</a> ; Sieroń A. (2009), Twenty years of experience with PDD and PDT in Poland - review, Photodiag. Photodyn. Ther, 6, 2, 73, doi.org/10.1016/j.pdpdt.2009.07.003 ; Allison R. (2008), Bionanotechnology and photodynamic therapy - state of the art review, Photodiag. Photodyn. Ther, 5, 19, doi.org/10.1016/j.pdpdt.2008.02.001 ; Podbielska H. (2004), Photodynamic Diagnostics and Therapy. ; El-Sayed I. (2006), Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles, Cancer Lett, 239, 129, doi.org/10.1016/j.canlet.2005.07.035 ; MacCormack M. (2006), Photodynamic Therapy, Adv. Dermatol, 22, 219, doi.org/10.1016/j.yadr.2006.09.008 ; Rai P. (2010), Development and applications of photo-triggered theranostic agents, Adv. Drug Deliv. Rev, 2, 11, 1094, doi.org/10.1016/j.addr.2010.09.002 ; Brigger I. (2002), Nanoparticles in cancer therapy and diagnosis, Adv. Drug Del. Rev, 54, 631, doi.org/10.1016/S0169-409X(02)00044-3 ; Moan J. (2003), Photodynamic Therapy, 1, doi.org/10.1039/9781847551658-00001 ; Marcucci F. (2004), Active targeting with particulate drug carriers in tumor therapy: fundamentals and recent progress, Drug Discov. Today, 9, 5, 219, doi.org/10.1016/S1359-6446(03)02988-X ; Koo O. (2005), Role of nanotechnology in targeted drug delivery and imaging: a concise review, Nanomedicine, 1, 193, doi.org/10.1016/j.nano.2005.06.004 ; Lovell J. (2010), Activatable photosensitizers for imaging and therapy, Chem. Rev, 110, 5, 2839, doi.org/10.1021/cr900236h ; Roy I. (2003), Ceramic-based nanoparticles entrapping water insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy, J. Am. Chem. Soc, 125, 7860, doi.org/10.1021/ja0343095 ; Sahoo S. (2003), Nanotech approaches to drug delivery and imaging, Drug Discov. Today, 8, 1112, doi.org/10.1016/S1359-6446(03)02903-9 ; Bechet D. (2008), Nanoparticles as vehicles for delivery of photodynamic therapy agents, Trends Biotechnol, 26, 11, 612, doi.org/10.1016/j.tibtech.2008.07.007 ; Konan Y. (2003), Enhanced photodynamic activity of meso-tetra(4-hydroxyphenyl) porphyrin by incorporation into sub-200 nm nanoparticles, Eur. J. Pharm. Sci, 18, 241, doi.org/10.1016/S0928-0987(03)00017-4 ; Pegaz B. (2005), Encapsulation of porphyrins and chlorins in biodegradable nanoparticles: the effect of dye lipophilicity on the extravasation and the photothrombic activity. A comparative study, J. Photochem. Photobiol. B, 80, 19, doi.org/10.1016/j.jphotobiol.2005.02.003 ; Konan Y. (2003), Preparation and characterization of sterile sub-200 nm meso-tetra(4-hydroxylphenyl)porphyrin-loaded nanoparticles for photodynamic therapy, Eur. J. Pharm. Biopharm, 55, 115, doi.org/10.1016/S0939-6411(02)00128-5 ; Vargas A. (2004), Improved photodynamic activity of porphyrin loaded into nanoparticles: an in vivo evaluation using chick embryos, Int. J. Pharm, 286, 131, doi.org/10.1016/j.ijpharm.2004.07.029 ; Soppimath K. (2001), Biodegradable polymeric nanoparticles as drug delivery devices, J. Control. Release, 70, 1, doi.org/10.1016/S0168-3659(00)00339-4 ; Ricci-Junior E. (2006), Zinc(II) phthalocyanine loaded PLGA nanoparticles for photodynamic therapy use, Int. J. Pharm, 310, 187, doi.org/10.1016/j.ijpharm.2005.10.048 ; Tang W. (2008), Encapsulation of methylene blue in polyacrylamide nanoparticle platforms protects its photodynamic effectiveness, Biochem. Biophys. Res. Commun, 369, 579, doi.org/10.1016/j.bbrc.2008.02.066 ; Adams M. (2003), Amphiphilic blockcopolymers for drug delivery, J. Pharm. Sci, 92, 1343, doi.org/10.1002/jps.10397 ; Lavasanifar A. (2000), Micelles of poly(ethylene oxide)-block-poly(N-alkyl stearate L-aspartamide): synthetic analogues of lipoproteins for drug delivery, J. Biomed. Mater. Res, 52, 4, 831, doi.org/10.1002/1097-4636(20001215)52:4<831::AID-JBM29>3.0.CO;2-K ; Yasugi K. (1999), Preparation and characterization of polymer micelles from poly(ethylene glycol)-poly(D, L-lactide) block copolymers as potential drug carrier, J. Control. Release, 62, 89, doi.org/10.1016/S0168-3659(99)00028-0 ; Rijcken C. (2007), Photosensitiser-loaded biodegradable polymeric micelles: Preparation, characterisation and in vitro PDT efficacy, J. Control. Release, 124, 144, doi.org/10.1016/j.jconrel.2007.09.002 ; C. van Nostrum (2004), Polymeric micelles to deliver photosensitizers for photodynamic therapy, Adv. Drug Del. Rev, 56, 9, doi.org/10.1016/j.addr.2003.07.013 ; Chung J. (1999), Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(Nisopropylacrylamide) and poly(butylmethacrylate), J. Control. Release, 62, 115, doi.org/10.1016/S0168-3659(99)00029-2 ; Neradovic D. (2001), Thermoresponsive polymeric micelles with controlled instability based on hydrolytically sensitive N-isopropylacrylamide copolymers, Macromolecules, 34, 7589, doi.org/10.1021/ma011198q ; Torchilin V. (2002), PEG-based micelles as carriers of contrast agents for different imaging modalities, Adv. Drug Deliv. Rev, 54, 235, doi.org/10.1016/S0169-409X(02)00019-4 ; Li Y. (2010), A novel size-tunable nanocarrier system for targeted anticancer drug delivery, J. Control. Release, 144, 3, 314, doi.org/10.1016/j.jconrel.2010.02.027 ; Torchilin V. (2005), Recent advances with liposomes as pharmaceutical carriers, Nat. Rev. Drug Discov, 4, 145, doi.org/10.1038/nrd1632 ; Thurston G. (1998), Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice, J. Clin. Invest, 101, 1401, doi.org/10.1172/JCI965 ; Krasnici S. (2003), Effect of the surface charge of liposomes on their uptake by angiogenic tumor vessels, Int. J. Cancer, 105, 561, doi.org/10.1002/ijc.11108 ; Konan Y. (2002), State of art in the delivery of the photosensitizers for photodynamic tharapy, Photochem. Photobiol. B, 66, 89, doi.org/10.1016/S1011-1344(01)00267-6 ; Svenson S. (2005), Dendrimers in biomedical applications - reflections on the field, Adv. Drug Del. Rev, 57, 2106, doi.org/10.1016/j.addr.2005.09.018 ; Caminade A. (2005), Characterization of dendrimers, Adv. Drug Del. Rev, 57, 2130, doi.org/10.1016/j.addr.2005.09.011 ; Kitchens K. (2005), Transepithelial and endothelial transport of poly (amidoamine) dendrimers, Adv. Drug Del. Rev, 57, 2163, doi.org/10.1016/j.addr.2005.09.013 ; Duncan R. (2005), Dendrimer biocompatibility and toxicity, Adv. Drug Del. Rev, 57, 2215, doi.org/10.1016/j.addr.2005.09.019 ; Okuda T. (2006), Biodistribution characteristics of amino acid dendrimers and their PEGylated derivatives after intravenous administration, J. Control. Release, 114, 69, doi.org/10.1016/j.jconrel.2006.05.009 ; Rietveld I. (2001), Location of the outer shell and influence of pH on carboxylic acid-functionalized poly(propylene imine) dendrimers, Macromolecules, 34, 8380, doi.org/10.1021/ma010363z ; El-Sayed M. (2001), Extravasation of poly(amidoamine) (PAMAM) dendrimers across microvascular network endothelium, Pharm. Res, 18, 23, doi.org/10.1023/A:1011066408283 ; Jevprasesphant R. (2003), The influence of surface modification on the cytotoxicity of PAMAM dendrimers, Int. J. Pharm, 252, 263, doi.org/10.1016/S0378-5173(02)00623-3 ; El-Sayed M. (2002), Transepithelial transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers, J. Control. Release, 81, 355, doi.org/10.1016/S0168-3659(02)00087-1 ; Malik N. (2000), Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of I-125-labelled poly(amidoamine) dendrimers in vivo, J. Control. Release, 65, 133. ; Wieder M. (2006), Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a ‘Trojan horse’, Photochem. Photobiol. Sci, 5, 8, 727, doi.org/10.1039/B602830F ; Czernielewski L. (2008), Aspects of Photodynamic Medicine II, 177. ; Wysocka K. (2008), Silver based nanomaterials - fluorescence enhancement in silver doped silica based nanobiomaterials, Engineering of Biomaterials, 81-84, 124. ; Isakau H. (2008), Toward understanding the high PDT efficacy of chlorine e6-polyvinylpyrrolidone formulations: photophysical and molecular aspects of photosensitizerpolymer interaction in vitro, J. Photochem. Photobiol. B, 92, 165, doi.org/10.1016/j.jphotobiol.2008.06.004 ; Chin W. (2008), Improved formulation of photosensitizer chlorin e6 polyvinylpyrrolidone for fluorescence diagnostic imaging and photodynamic therapy of human cancer, Eur. J. Pharm. Biopharm, 69, 1083, doi.org/10.1016/j.ejpb.2008.02.013 ; Bindig U. (2008), Investigations on photolon- and porphyrindoped sol-gel fiberoptic coatings for laser-assisted applications in medicine, Laser Phys, 18, 1, doi.org/10.1134/S1054660X08010118 ; Ulatowska-Jarża A. (2009), Silica-based versus silica-titania sol-gel materials - comparison of the physical properties: surface tension, gelation time, refractive index and optical transmittance, Opt. Appl, 39, 211. ; Podbielska H. (2006), The comparison of photodynamic activity of Photolon and Protoporphyrine on pathogenic bacteria in vitro, Pol. J. Environ. Stud, 15, 147. ; Wangi Y. (2006), Enhancement effect of terbium complex luminescence by binding to silver nanoparticles in the solution, Optoelectron. Lett, 2, 316, doi.org/10.1007/BF03033670 ; Nabika H. (2003), Enhancing and quenching functions of silver nanoparticles on the luminescent properties of Europium complex in the solution phase, J. Phys. Chem. B, 107, 35, 9161, doi.org/10.1021/jp035741b ; Areva S. (2007), Sol-gel-derived TiO2-SiO2 implant coatings for direct tissue attachment. Part II: Evaluation of cell response, J. Mater. Sci. Mater. Med, 18, 8, 1633, doi.org/10.1007/s10856-007-3064-z ; Ochsenbein A. (2008), Osteoblast responses to different oxide coatings produced by the sol-gel process on titanium substrates, Acta Biomater, 4, 5, 1506, doi.org/10.1016/j.actbio.2008.03.012 ; Böcking D. (2009), Cultivation of human fibroblasts and multipotent mesenchymal stromal cells on mesoporous silica and mixed metal oxide films, J. Mater. Sci, 44, 24, 6786, doi.org/10.1007/s10853-009-3565-x ; Muhonen V. (2009), Biocompatibility of sol-gel-derived titania-silica coated intramedullary NiTi nails, Acta Biomater, 5, 2, 785, doi.org/10.1016/j.actbio.2008.08.023 ; Ääritalo V. (2010), Development of a low temperature sol-gel-derived titania-silica implant coating, Materials Sciences and Applications, 1, 118, doi.org/10.4236/msa.2010.13020 ; Peterson M. (2007), Inorganic metallodielectric materials fabricated using two singlestep methods based on the Tollen's process, J. Colloid Interface Sci, 306, 41, doi.org/10.1016/j.jcis.2006.10.013 ; Wysocka K. (2007), Silicon nanomaterials doped with silver and their possible applications in biomedicine, Acta Bio-Opt. et Informat. Med, 13, 3, 180. ; P. Cordiali Fei (1997), Flow cytometric analysis of fluorocytes in patients with erythropoietic porphyria, Eur. J. Histochem, 41, 2, 9. ; Lam C.-W. (2011), Circulating fluorocytes at the first attack of acute intermittent porphyria: a missing link in the pathogenesis, Clin. Chim. Acta, 412, 1-2, 208, doi.org/10.1016/j.cca.2010.09.005 ; Ribeiro A. (2002), Spectroscopic studies on the inclusion complexes of tetrakis(2-hydroxy-5-nitrophenyl)porphyrin with a-cyclodextrin in solution and in sol-gel matrix, Mater. Sci, 20, 1, 21. ; Wieder M. (2006), Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a Trojan horse, Photochem. Photobiol. Sci, 5, 727. ; Yan F. (2003), The embedding of metatetra(hydroxyphenyl)-chlorin into silica nanoparticle platforms for photodynamic therapy and their singlet oxygen production and pH-dependent optical properties, Photochem. Photobiol, 78, 587, doi.org/10.1562/0031-8655(2003)078<0587:TEOMIS>2.0.CO;2 ; Lu Z. (2007), Polymer platforms for drug delivery and biomedical imaging, J. Control. Release, 122, 269, doi.org/10.1016/j.jconrel.2007.06.016 ; Pegaz B. (2006), Effect of nanoparticle size on the extravasation and the photothrombic activity of meso(ptetracarboxyphenyl) porphyrin, J. Photochem. Photobiol. B, 85, 216, doi.org/10.1016/j.jphotobiol.2006.07.008 ; Carl Schlyter, <i>Report on Regulatory Aspects of Nanomaterials (2008/2208(INI))</i>, Committee on the Environment, Public Health and Food Safety <a target="_blank" href='http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+REPORT+A6-2009-0255+0+DOC+XML+V0//EN'>http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+REPORT+A6-2009-0255+0+DOC+XML+V0//EN</a>

DOI

10.2478/v10175-011-0031-0

×