Details

Title

2.1 μm emission of Tm3+/Ho3+ - doped antimony-silicate glasses for active optical fibre

Journal title

Bulletin of the Polish Academy of Sciences Technical Sciences

Yearbook

2011

Volume

59

Issue

No 4

Authors

Divisions of PAS

Nauki Techniczne

Coverage

381-387

Date

2011

Identifier

DOI: 10.2478/v10175-011-0045-7 ; ISSN 2300-1917

Source

Bulletin of the Polish Academy of Sciences: Technical Sciences; 2011; 59; No 4; 381-387

References

Eichhorn M. (2008), Quasi-three-level solid-state lasers in near and mid infrared based on trivalent rare earth ions, Appl. Phys, B 93, 269, doi.org/10.1007/s00340-008-3214-0 ; Walsch B. (2009), Review of Tm and Ho Materials, Spectroscopy and Lasers, Laser Physics, 19, 4, 855, doi.org/10.1134/S1054660X09040446 ; Godard A. (2007), Infrared (2-12 μm) solid-state laser sources: a review, C. R. Physique, 8, 1100, doi.org/10.1016/j.crhy.2007.09.010 ; Zając A. (2010), Fibre lasers - conditioning constructional and technological, Bull. Pol. Ac.: Tech, 58, 4, 491. ; Milanese D. (2008), Investigation of infrared emission and lifetime in Tm-doped 75TeO<sub>2</sub>:20ZnO:5Na<sub>2</sub>O (mol%) glasses: effect of Ho and Yb co-doping, J. Non-Cryst. Solid, 354, 1955, doi.org/10.1016/j.jnoncrysol.2007.11.010 ; Pustelny T. (2003), Optical fiber sensors of magnetic field applying Faraday's effect, Optica Applicata, 32, 2-3, 469. ; Balda R. (2007), Opt. Express, 15, 6750, doi.org/10.1364/OE.15.006750 ; Bünzli J. (2010), Lanthanide NIR luminescence for telecommunications, bioanalyses and solar energy conversion, J. Rare Earths, 28, 6, 824, doi.org/10.1016/S1002-0721(09)60208-8 ; Wanga M. (2009), 2 μm emission performance in Ho<sup>3+</sup> doped fluorophosphate glasses sensitized with Er<sup>3+</sup> and Tm<sup>3+</sup> under 800 nm excitation, Solid State Communications, 149, 1216, doi.org/10.1016/j.ssc.2009.04.021 ; Richards B. (2007), Infrared emission and energy transfer in Tm<sup>3+</sup>, Tm<sup>3+</sup>-Ho<sup>3+</sup> and Tm<sup>3+</sup>-Yb<sup>3+</sup>-doped tellurite fibre, Opt. Express, 15, 6546, doi.org/10.1364/OE.15.006546 ; Jackson S. (2003), High-power diode-cladding-pumped Tm <sup>3+</sup>, Ho <sup>3+</sup>-doped silica fibre laser, Appl. Phys, B 77, 489, doi.org/10.1007/s00340-003-1305-5 ; Peng B. (1995), Blue, green and 0.8 μm Tm<sup>3+</sup>, Ho<sup>3+</sup> doped upconversion laser glasses, sensitized by Yb<sup>3+</sup>, Opt. Mater, 4, 797, doi.org/10.1016/0925-3467(95)00031-3 ; Shi D. (2007), Spectroscopic properties and energy transfer in Ga<sub>2</sub>O<sub>3</sub>-Bi<sub>2</sub>O<sub>3</sub>-PbO-GeO<sub>2</sub> glasses codoped with Tm<sup>3+</sup> and Ho<sup>3+</sup>, J. Non-Cryst. Solids, 353, 1508, doi.org/10.1016/j.jnoncrysol.2007.02.034 ; Tsang Y. (2008), A Yb<sup>3+</sup>/Tm<sup>3+</sup>/Ho<sup>3+</sup> triply-doped tellurite fibre laser, Opt. Express, 16, 14, 10690, doi.org/10.1364/OE.16.010690 ; Pustelny T. (2004), Special optical fiber type D applied in optical sensor of electric currents, Optica Applicata, 34, 4, 531. ; Förster T. (1948), Zwischenmolekulare Energiewanderung und Fluoreszenz, Ann. Physik, 6, 2, 55, doi.org/10.1002/andp.19484370105 ; Dexter D. (1953), A theory of sensitized luminescence in solids, J. Chem. Phys, 21, 836, doi.org/10.1063/1.1699044 ; Hijanosa S. (2003), Energy back transfer, migration and energy transfer (Yb-to-Er and Er-to-Yb) processes in Yb, Er:YAG, J. Lum, 102-103, 694, doi.org/10.1016/S0022-2313(02)00626-9 ; Kumar G. (2007), Near-infrared optical characteristics of chalcogenide-bound Nd<sup>3+</sup> molecules and clusters, Chem. Mater, 19, 2937, doi.org/10.1021/cm052643p ; Digonnet M. (2001), Rare-Earth-Doped Fiber Lasers and Amplifiers, 17, doi.org/10.1201/9780203904657 ; Gao G. (2009), Investigation of 2.0 μm emission in Tm<sup>3+</sup> and Ho<sup>3+</sup> codoped oxyfluride tellurite glass, J. Lum, 129, 1042, doi.org/10.1016/j.jlumin.2009.04.024 ; Jackson S. (2003), Mid-infrared fiber lasers, Appl. Phys, 89, 219. ; Li X. (2007), Investigation of energy transfer and frequency upconversion in Ho<sup>3+</sup>/Yb<sup>3+</sup> co-doped tellurite glasses, J. Phys. Chem. Solids, 68, 8, 1566, doi.org/10.1016/j.jpcs.2007.03.039 ; Koetke J. (1995), Infrared excited-state absorption and stimulated-emission cross sections of Er<sup>3+</sup>-doped crystals, Appl. Phys, B 61, 151, doi.org/10.1007/BF01090936 ; McCumber D. (1964), Einstein relations connecting broadband emission and absorption spectra, Physics. Review, 136, doi.org/10.1103/PhysRev.136.A954 ; Walsh B. (2004), Comparison of Tm: ZBLAN and Tm: silica fiber lasers; spectroscopy and tunable pulsed laser operation around 1.9 μm, Appl. Phys, B 78, 325, doi.org/10.1007/s00340-003-1393-2 ; Doualan J. (2003), Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm, Opt. Mat, 24, 563, doi.org/10.1016/S0925-3467(03)00144-7 ; Fan H. (2010), Tm<sup>3+</sup> doped Bi<sub>2</sub>O<sub>3</sub>-GeO<sub>2</sub>-Na<sub>2</sub>O glasses for 1.8 μm fluorescence, Opt. Mat, 32, 627, doi.org/10.1016/j.optmat.2009.12.012 ; Xu R. (2010), Spectroscopic properties of 1.8 μm emission of thulium ions in germanate glass, Appl. Phys, B 102, 109. ; Reben M. (2010), Influence of active admixtures onto tellurite glass refractive index, Bull. Pol. Ac.: Tech, 58, 4, 519.
×