Details

Title

Generalized feedback stability for periodic linear time-varying, discrete-time systems

Journal title

Bulletin of the Polish Academy of Sciences: Technical Sciences

Yearbook

2012

Numer

No 1 March

Publication authors

Divisions of PAS

Nauki Techniczne

Publisher

Polish Academy of Sciences

Date

2012

Identifier

ISSN 0239-7528, eISSN 2300-1917

References

Brockett R. (1967), Frequency domain instability criteria for time-varying and nonlinear systems, Proc. IEEE, 55, 604, doi.org/10.1109/PROC.1967.5626 ; Brockett R. (1966), Frequency domain stability criteria, IEEE Trans. Autom. Contr, 11, 255. ; Kwon H. (1966), On feedback stabilization of time-varying discrete linear systems, IEEE Trans. Aut. Contr, 23, 3, 479, doi.org/10.1109/TAC.1978.1101749 ; Kalman R. (1963), Lyapunov functions for the problem of Lurie in automatic control, Proc. Nat. Acad. Sci, 49, 201, doi.org/10.1073/pnas.49.2.201 ; Polański A. (2000), Chosen problems of linear systems' stability with variable in time parameters, Scientific Note Books of the Silesian University of Technology: Automatics, 128. ; Shorten R. (1998), On the stability and existence of common Lyapunov functions for stable linear switching systems, null, 1, 3723. ; Popov V. (1961), Absolute stability of nonlinear systems of automatic control, Automation and Remote Control, 22, 857. ; Popov V. (1973), Hyperstability of Control Systems. ; Popov V. (1963), The solution of a new stability problem for controlled systems, Automation and Remote Control, 24, 1. ; Rantzer A. (1966), On the Kalman-Yakubovich-Popov lemma, Syst. Contr, 28, 7. ; Yakubovich V. (1974), A frequency theorem for the case in which the state and control spaces are Hilbert spaces, with an applications to some problems in the synthesis of optimal controls, Siberian J. of Mathematics, 15, 457, doi.org/10.1007/BF00969815 ; Yakubovich V. (1973), The frequency theorem in control theory, Siberian J. of Mathematics, 14, 384. ; Grabowski P. (1999), Stability of Lurie's Systems. ; Halanay A. (1993), Generalized discrete-time Popov-Yakubovich theory, Systems & Control Letters, 20, 1, 1, doi.org/10.1016/0167-6911(93)90080-P ; Ionescu V. (1993), Continuous and discrete-time Riccati theory: a Popov function approach, Linear Algebra and its Applications, 193, 173, doi.org/10.1016/0024-3795(93)90277-U ; Jonson D. (1999), A Popov criterion for systems with slowly time-varying parameters, IEEE Trans. Aut. Contr, 44, 844, doi.org/10.1109/9.754831 ; Orlowski P. (2006), Methods for stability evaluation for linear time varying, discrete-time systems on finite time horizon, Int. J. Control, 79, 3, 249, doi.org/10.1080/00207170500513181 ; Orlowski P. (2007), An extension of Nyquist feedback stability for linear time-varying, discrete-time systems, Int. J. Factory Automation, Robotics and Soft Computing, 2, 51. ; Orlowski P. (2008), Feedback stability of discrete-time, linear time-varying systems, null, 1, 1002. ; Liu K. (1999), Extension of modal analysis to linear time-varying systems, J. Sound and Vibration, 226, 149, doi.org/10.1006/jsvi.1999.2286 ; Shokoohi S. (1987), Linear time-variant systems: stability of reduced models, Automatica, 20, 59, doi.org/10.1016/0005-1098(84)90065-7 ; Anderson D. (1982), Internal and external stability of linear time varying systems, SIAM J. Control and Optimization, 20, 408, doi.org/10.1137/0320031 ; Iglesias P. (1995), Input-output stability of sampled-data linear time-varying systems, IEEE Trans. Aut. Contr, 40, 9, 1647. ; Han H. (1994), Necessary and sufficient conditions for stability of time-varying discrete interval matrices, Int. J. Control, 59, 4, 1021, doi.org/10.1080/00207179408923115 ; Miller D. (1989), An adaptive controller which provides Lyapunov stability, IEEE Trans. Automat. Control, 34, 599, doi.org/10.1109/9.24228 ; Narendra K. (1989), Adaptive control using multiple models, IEEE Trans. Automat. Control, 42, 171, doi.org/10.1109/9.554398 ; M. De La Sen (2002), Robust stability of a class of linear time-varying systems, IMA J. Mathematical Control and Information, 19, 399, doi.org/10.1093/imamci/19.4.399 ; Khalil H. (1996), Nonlinear Systems. ; Orlowski P. (2010), Discrete-time, linear periodic time-varying system norm estimation using finite time horizon transfer operators, Automatika, 51, 4, 325. ; Meyer R. (1975), A unified analysis of multirate and periodically time-varying digital filters, IEEE Trans. Circuits and Systems, 22, 162, doi.org/10.1109/TCS.1975.1084020 ; Flamm D. (1991), A new shift-invariant representation of periodic linear systems, Systems & Control Lett, 17, 9, doi.org/10.1016/0167-6911(91)90093-T ; Bittanti S. (2000), Invariant representations of discrete-time periodic systems, Automatica, 36, 1777. ; Varga A. (1989), Computation of transfer function matrices of generalized state-space models, Int. J. Control, 50, 2543, doi.org/10.1080/00207178908953514 ; Laub A. (1981), Efficient multivariable frequency response computations, IEEE Trans. Autom. Control, 26, 407, doi.org/10.1109/TAC.1981.1102602 ; D'Angelo H. (1970), Linear Time-Varying Systems. ; Orlowski P. (2005), Determining the degree of system variability for time-varying discrete-time systems, null, 1. ; Bamieh B. (1991), A lifting technique for linear periodic systems with applications to sampled-data control, Systems & Control Letters, 17, 2, 79, doi.org/10.1016/0167-6911(91)90033-B ; Amato F. (2001), Finite-time control of linear systems subject to parametric uncertainties and disturbances, Automatica, 37, 9, 1459, doi.org/10.1016/S0005-1098(01)00087-5 ; Davari A. (1994), Short-time stability analysis of time-varying linear systems, null, 1, 302. ; Dorato P. (1961), Short time stability in linear time-varying systems, null, 4, 83. ; Dorato P. (1997), Robust finite-time stability design via linear matrix inequalities, null, 2, 1305. ; Dorato P. (2006), Current Trends in Nonlinear Systems and Control, 185, doi.org/10.1007/0-8176-4470-9_10 ; Mastellone S. (2006), Current Trends in Nonlinear Systems and Control, 535, doi.org/10.1007/0-8176-4470-9_29 ; Rew D. (1996), Short-time stability of pro-portional navigation guidance loop, IEEE Trans. Aerospace and Electronic Systems, 32, 3, 1107, doi.org/10.1109/7.532269 ; Weiss L. (1967), Finite time stability under perturbing forces and on product spaces, IEEE Trans. Autom. Contr, 12, 54, doi.org/10.1109/TAC.1967.1098483

DOI

10.2478/v10175-012-0024-7

×