Szczegóły

Tytuł artykułu

Continuous-time dynamic system identification with multisine random excitation revisited

Tytuł czasopisma

Archives of Control Sciences

Rocznik

2010

Numer

No 2

Autorzy publikacji

Wydział PAN

Nauki Techniczne

Wydawca

Committee of Automatic Control and Robotics PAS

Data

2010

Identyfikator

ISSN 1230-2384

Referencje

Bendat J. (1986), Random data analysis and measurement procedures. ; Bendat J. (1993), Engineering applications of correlation and spectral analysis. ; Bilinskis I. (2001), Introduction to digital alias-free signal processing. ; Bilinsks I. (2007), Digital alias-free signal processing. ; Blahut R. (1985), Fast algorithms for digital signal processing. ; Chou C. (1999), Continuous-time identification of SISO systems using Laguerre functions, IEEE Trans. on Signal Processing, 47, 349. ; Christensen R. (1991), Linear models for multivariate, time-series, and spatial data. ; Czyż K. (2006), Signal reconstruction with oversampling for active noise control, null, 1, 1033. ; Czyż K. (2007), Active noise control systems with nonuniform signal sampling. ; Farok A. (2001), Nonuniform sampling: Theory and practice. ; J. Figwer: Identification of multi-input spactral models: Ph.D. Thesis, Technical report, The Silesian University of Technology, Institute of Automatic Control, Gliwice, 1992, (in Polish). ; Figwer J. (1996), Multisine excitation for process identification, Archives of Control Sciences, 5, 279. ; Figwer J. (1996), Random noise synthesis and generation, null, 1, 83. ; Figwer J. (1997), A new method of random time-series simulation, Simulation Practice and Theory, 5, 217. ; Figwer J. (1997), Continuous-time system identification with multisine excitation, null, 1, 317. ; Figwer J. (1998), Two-input system identification using bivariate multisine excitation, null, 571. ; Figwer J. (1999), Random process synthesis and simulation. ; Figwer J. (2002), Closed-loop system identification with multisine excitation, null, 477. ; Figwer J. (2002), Identification of secondary path in active noise control, null. ; Figwer J. (2003), Model identification and update under operation of active noise control systems, Pomiary Automatyka Kontrola, 11, 22. ; Figwer J. (2004), Multisine transformation - properties and applications, Nonlinear Dynamics, 35, 331, doi.org/10.1023/B:NODY.0000027763.46068.2d ; Figwer J. (2005), Identification of Wiener models with multisine random excitation, null, 1, 343. ; Figwer J. (2007), Multisine random rumber generator. ; Figwer J. (2007), Nonlinear secondary path model identification, null, 71. ; Figwer J. (2008), Adaptive synthesis and generation of random fields. ; Figwer J. (2009), Inżynieria Wiedzy i Systemy Ekspertowe, 89. ; Figwer J. (2005), Identification of continuous dynamical systems with multirate sampled signals, null, 2, 317. ; J. Figwer and A. Niederliński: Multisine series for simulation and identification. Technical Report, The Silesian University of Technology, Institute of Automatic Control, Gliwice, 1992. ; Figwer J. (1991), A new approach to the identification of linear discrete-time MISO systems, null, 1220. ; Figwer J. (1993), A new approach to the identification of linear discrete-time MISO systems, Archives of Control Sciences, 2, 223. ; Garnier H. (2003), Developments for the Matlab CONTSID Toolbox, null, 1007. ; Garnier H. (2003), Continuous-time model identification from sampled data: implementation issues and performance evaluation, Int. J. of Control, 76, 1337. ; Garnier H. (2008), Identification of continuous-time models from sampled data. ; Gilbberg J. (2010), Frequency domain identification of continuous-time output error models, Part I: Uniformly sampled data and frequency function approximation, Automatica, 46, 1. ; Gilbberg J. (2010), Frequency domain identification of continuous-time output error models, Part II: Non-uniformly sampled data and B-spline output approximation, Automatica, 46, 11. ; Główka T. (2007), A new approach to frequency response identification, null, 555. ; Hansen C. (1997), Active control of noise and vibration. ; Harris F. (1978), On the use of windows for harmonic analysis with discrete Fourier transform, Proc. of the IEEE, 66, 51. ; Harrison K. (2001), Input-output identifability of continuous-time linear systems, J. of Complexity, 18, 210. ; Jenkins G. (1968), Spectral analysis and its applications. ; Johansson R. (1993), System modeling and identification. ; Johansson R. (1994), Identification of continuous-time models, IEEE Trans. on Signal Processing, 42, 887. ; Johansson R. (1999), Stochastic theory of continuous-time statespace identification, IEEE Trans. on Signal Processing, 47, 41. ; Kay S. (1986), Modern spectral estimation: Theory and applications. ; KUO S. (1996), Active noise control systems. Algorithms and DSP implementations. ; Ljung L. (1999), System identification - Theory for the user. ; Mahata K. (2006), Identification of continuous-time errors-invariables models, Automatica, 42, 1477. ; Marple S. (1987), Digital spectral analysis with applications. ; Mitra S. (1993), Handbook for dgital signal processing. ; Niederliński A. (1990), Expert system for process identification. ; Niederliński A. (1997), MULTI-EDIP analyzer of multidimensional signals and systems. ; Nelson P. (1992), Active control of sound. ; Pillai U. (1993), Spectrum estimation and system identification, doi.org/10.1007/978-1-4613-8318-5 ; Pintelon R. (1997), Identification of continuous-time systems using arbitrary signals, Automatica, 33, 991. ; Pintelon R. (2001), System identification. A frequency domain approach. ; Rao G. (2006), Identification of continuous-time systems, IEE Proceedings on Control Theory Applications, 153, 185. ; Saha D. (1983), Identification of continuous dynamical systems - the Poisson moment functional (PMF) approach, doi.org/10.1007/BFb0044036 ; Sinha N. (1991), Identification of continuous-time systems: Methodology and computer implementations, doi.org/10.1007/978-94-011-3558-0 ; Söderström T. (1989), System identification. ; Stoica P. (1987), Introduction to spectral analysis. ; Tugnait J. (2000), On closed-loop system identification using polyspectral analysis given noisy input-output time-domain data, Automatica, 36, 1795, doi.org/10.1016/S0005-1098(00)00104-7 ; Unbehauen H. (1987), Identification of continuous-time systems. ; Young P. (1981), Parameter estimation for continuous-time models - A survey, Automatica, 17, 23. ; Zarzycki J. (1998), Orthogonal digital filtering of stochastic signals.

DOI

10.2478/v10170-010-0009-4

×