Details

Title

Hybrid synchronization of n–scroll Chua and Lur’e chaotic systems via backstepping control with novel feedback

Journal title

Archives of Control Sciences

Yearbook

2012

Numer

No 3

Publication authors

Divisions of PAS

Nauki Techniczne

Description

Archives of Control Sciences welcomes for consideration papers on topics of significance in broadly understood control science and related areas, including: basic control theory, optimal control, optimization methods, control of complex systems, mathematical modeling of dynamic and control systems, expert and decision support systems and diverse methods of knowledge modelling and representing uncertainty (by stochastic, set-valued, fuzzy or rough set methods, etc.), robotics and flexible manufacturing systems. Related areas that are covered include information technology, parallel and distributed computations, neural networks and mathematical biomedicine, mathematical economics, applied game theory, financial engineering, business informatics and other similar fields.

Aims and Scope: Archives of Control Sciences publishes papers in the broadly understood field of control science and related areas while promoting the closer integration of the Polish, as well as other Central and East European scientific communities with the international world of science.

Abstract

Abstract This paper investigates the backstepping control design with novel feedback input approach for controlling chaotic systems to guarantee the complete synchronization as well as the anti-synchronization of chaotic systems, viz. n-scroll Chua (K. Wallace et.al. 2001) and Lur’e chaotic systems. Our theorems on hybrid synchronization for n-scroll Chua and Lur’e (J.Suyken et.al. 1997) chaotic systems is established using Lyapunov stability theory. Based on the Lyapunov function, the backstepping control is determined to tune the controller gain based on the precalculated feedback control inputs. The backstepping scheme is recursive procedure that links the choice of a Lyapunov function with the design of a controller and guarantees global stability performance of strict-feedback chaotic systems. Since the Lyapunov exponents are not required for these calculations, the backstepping control method is effective and convenient to synchronize the chaotic systems. Mainly this technique gives the flexibility to construct a control law. Numerical simulations are also given to illustrate and validate the hybrid synchronization results derived in this paper

Publisher

Committee of Automatic Control and Robotics PAS

Date

2012

Identifier

ISSN 1230-2384

DOI

10.2478/v10170-011-0028-9

×