Details

Title

Eigenproblems in nanomechanics

Journal title

Bulletin of the Polish Academy of Sciences: Technical Sciences

Yearbook

2015

Numer

No 3 September

Publication authors

Divisions of PAS

Nauki Techniczne

Publisher

Polish Academy of Sciences

Date

2015[2015.01.01 AD - 2015.12.31 AD]

Identifier

ISSN 0239-7528, eISSN 2300-1917

References

Lassen (2004), Melnik Exact envelopefunction theory versus symmetrized Hamiltonian for quantum wires : a comparison, Solid State Commun, 132. ; Koller (2007), Spin transport across carbon nanotube quantum dots, New Journal of Physics, 9, 348, doi.org/10.1088/1367-2630/9/9/348 ; Baughman (2002), Carbon nanotubes - the route toward applications, Science, 297. ; Wu (2008), The intrinsic stiffness of single - wall carbon nanotubes, Mechanics Research Communications, 35, 2, doi.org/10.1016/j.mechrescom.2007.08.012 ; Voss (2006), Numerical calculation of the electronic structure for three - dimensional quantum dots, Phys Communications, 174. ; Banaś (2013), Current problems in design of quantum dots used in semiconductors, Key Eng Mat, 542. ; Muc (2010), Design and identification methods of effective mechanical properties for carbon nanotubes Mat, Design, 31, 1671. ; Zaslavsky (1995), Strain relaxation in silicon / germanium microstructures observed by resonant tunneling spectroscopy, Applied Physics Letters, 67. ; Dekker (1999), Carbon nanotubes as molecular quantum wires, Physics Today, 52, 22, doi.org/10.1063/1.882658 ; Stier (1999), Electronic and optical properties of strained quantum dots modeled by - band k p theory, Phys Rev B, 8, 59. ; Martyniuk (2009), Insight into performance of quantum dot infrared photodetectors, Bull Tech, 57. ; Muc (2011), Modelling of carbon nanotubes behaviour with the use of a thin shell theory, Appl Mech, 49. ; Szefer (2009), Modeling of strains and stresses of material nanostructures Bull Pol, Tech, 57, 41. ; Grundmann (1995), InAs / GaAs pyramidal quantum dots : Strain distribution optical phonons and electronic structure, Phys Rev B, 52. ; Gelbard (2001), Modeling quantum structures with the boundary element method, Phys, 172. ; Muc (2013), An analytical solution for conical quantum dots, Appl Mech, 51. ; Srivastava (2003), Nanomechanics of carbon nanotubes and composites, Applied Mechanics Reviews, 56, 215, doi.org/10.1115/1.1538625

DOI

10.1515/bpasts-2015-0093

×