Tytuł artykułu

Analysis, adaptive control and synchronization of a novel 4-D hyperchaotic hyperjerk system and its SPICE implementation

Tytuł czasopisma

Archives of Control Sciences




No 1

Autorzy publikacji

Wydział PAN

Nauki Techniczne


<jats:title>Abstract</jats:title> <jats:p>A hyperjerk system is a dynamical system, which is modelled by an <jats:italic>n</jats:italic>th order ordinary differential equation with <jats:italic>n</jats:italic> ⩾ 4 describing the time evolution of a single scalar variable. Equivalently, using a chain of integrators, a hyperjerk system can be modelled as a system of <jats:italic>n</jats:italic> first order ordinary differential equations with <jats:italic>n</jats:italic> ⩾ 4. In this research work, a 4-D novel hyperchaotic hyperjerk system has been proposed, and its qualitative properties have been detailed. The Lyapunov exponents of the novel hyperjerk system are obtained as <jats:italic>L</jats:italic><jats:sub>1</jats:sub> = 0.1448, <jats:italic>L</jats:italic><jats:sub>2</jats:sub> = 0.0328, <jats:italic>L</jats:italic><jats:sub>3</jats:sub> = 0 and <jats:italic>L</jats:italic><jats:sub>4</jats:sub> = −1.1294. The Kaplan-Yorke dimension of the novel hyperjerk system is obtained as <jats:italic>D<jats:sub>KY</jats:sub></jats:italic>= 3.1573. Next, an adaptive backstepping controller is designed to stabilize the novel hyperjerk chaotic system with three unknown parameters. Moreover, an adaptive backstepping controller is designed to achieve global hyperchaos synchronization of the identical novel hyperjerk systems with three unknown parameters. Finally, an electronic circuit realization of the novel jerk chaotic system using SPICE is presented in detail to confirm the feasibility of the theoretical hyperjerk model.</jats:p>


Committee of Automatic Control and Robotics PAS


2015[2015.01.01 AD - 2015.12.31 AD]


ISSN 1230-2384