Estimation of an equivalent short solenoid model using different numerical methods

Journal title

Archives of Electrical Engineering




No 4 December

Publication authors

Divisions of PAS

Nauki Techniczne


Polish Academy of Sciences




eISSN: 2300-2506 ; ISSN: 1427-4221


Tarantola A. (2005), Inverse problems theory and methods for model parameter estimation, ; Desideri D. (2010), Reconstruction of an equivalent magnetostatic source of a magnetron sputtering device, Modern Power Systems, Acta Electrotehnica, 51, 119. ; Desideri D. (null), Identification of an equivalent model for the permanent magnets of a magnetron sputtering device, COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering. ; Bertero M. (1988), Ill-posed problems in early vision, Proceedings of the IEEE, 76, 869, ; Ceclan A. (2006), On an object identification via electric potential measurments, EPE, LII. ; Nocedal J. (1999), Numerical optimization, ; P. Van Henteryk (1997), Solving polynomial systems using a branch prune approach, SIAMJ. Numer. Anal, 34, 2, 797, ; Grosan C. (2008), A new approach for solving nonlinear systems of equations, IEEE Transactions on systems, man, and Cybernetics, Part A: Systems and humans, 38, 3. ; Murdock T. (1991), Use of a genetic algorithm to analize robust stability problems, null, 886. ; Marra M. (1996), Stability and optimality in genetic algorithms controllers, null, 492. ; Blaschke B. (1997), On the convergence rates for the iteratively regularized Gauss-Newwton method, IMA Journal of Numerical Analysis, 421, ; Rieder A. (1999), On the regularization of nonlinear ill-posed problems via inexact Newton iterations, Inverse Problems, 15, 3, 309, ; Meng Z. (2009), Newton-type method with double regularization parameter for nonlinear illposed problems, Intelligent Computing and Intelligent Systems, IEEE International Conference on, 2, 367, ; Watzenig D. (2004), Adaptive regularization parameter adjustment for reconstruction problems, IEEE Transactions on Magnetics, 40, 2,