Szczegóły

Tytuł artykułu

Quantitative Analysis of the Polyurethane Composites with Non-Organic Nanofiller for Use in Implants of Intervertebral Disc

Tytuł czasopisma

Archive of Mechanical Engineering

Rocznik

2012

Numer

No 2

Autorzy publikacji

Wydział PAN

Nauki Techniczne

Wydawca

Polish Academy of Sciences, Committee on Machine Building

Data

2012

Identyfikator

ISSN 0004-0738, e-ISSN 2300-1895

Referencje

Bistricic L. (2010), Hydrogen bonding and mechanical properties of thin films of polyether-based polyurethane-silica nanocomposites, European Polymer Journal, 46, 1975, doi.org/10.1016/j.eurpolymj.2010.08.001 ; Lafuente J. (2005), The Bryan cervical disc prosthesis as an alternative to arthrodesis in the treatment of cervical spondylosis, The Journal of bone & joint surgery, 87-B, 4, 508, doi.org/10.1302/0301-620X.87B4.15436 ; M Sasso (2008), Cervical Kinematics After Fusion and Bryan Disc Arthroplasty, J. Spinal Disord Tech, 21, 1, 19, doi.org/10.1097/BSD.0b013e3180500778 ; Anderson P. (2003), Wear Analysis of the Bryan Cervical Disc Prosthesis, SPINE, 28. ; Lelah M. (1986), Polyurethanes in medicine authors. ; Lambda N. (1998), Polyurethanes in Biomedical Applications. ; Ryszkowska J. (2010), Biodegradable polyurethane composite scaffolds containing Bioglass® for bone tissue engineering, Comp. Sci, Technol, 70, 13, 1894, doi.org/10.1016/j.compscitech.2010.05.011 ; Oprea S. (2009), Wpływ struktury na stabilność termiczną usieciowanych poli(estro-uretanów, Polimery, 2, 120. ; Hepburn C. (1992), Polyurethane Elastomers, doi.org/10.1007/978-94-011-2924-4 ; Brzeska J. (2010), Wpływ syntetycznego polihydroksymaślanu na wybrane właściwości nowych, otrzymanych z jego udziałem poliuretanów do zastosowań medycznych. Cz. I Poliuretany z aromatycznym diizocyjanianem w segmencie sztywnym, Cz. II Poliuretany z cykloalifatycznym diizocyjanianem w segmencie sztywnym, Polimery, 55, 11. ; Janik H. (null), Postępy w badaniach struktur nadcząsteczkowych segmentowych poliuretanów, Polimery, 55, 6, 421. ; Geceler K. (2006), Functional Nanomaterials. ; Mai Y.-W. (2006), Polymer nanocomposites, doi.org/10.1533/9781845691127 ; Vega-Baudrita J. (2007), Properties of thermoplastic polyurethane adhesives containing nanosilicas with different specific surface area and silanol content, Int. J. Adhesion & Adhesives, 27, 469, doi.org/10.1016/j.ijadhadh.2006.08.001 ; Ryszkowska J. (2009), Kompozyty poliuretanowe z nanokrzemionką modyfikowaną grupami izocyjanianowymi, Polimery, 54, 10, 657. ; Ryszkowska J. (2007), Structure and properties of polyurethane nanocomposites with zirconium oxide including Eu3+, Materials Science and Engineering C, 27, 994, doi.org/10.1016/j.msec.2006.09.046 ; Ryszkowska J. (2007), Structure and properties of polyurethane/YAG: Tb3+, Polimery, 52, 20. ; Ryszkowska J. (2006), Wpływ modyfikacji bemitu na dyspersję w poliuretanowej osnowie, Inżynieria Materiałowa, 6, 154, 1315. ; Strange D. (2010), Restoration of compressive loading properties of lumbar discs with a nucleus implant - a finite element analysis study, The Spine Journal, 10, 602, doi.org/10.1016/j.spinee.2010.04.015 ; Hafeman A. (2008), Injectable biodegradable polyurethane scaffolds with release of platelet-derived growth factor for tissue repair and regeneration, Pharm Res, 25, 2387, doi.org/10.1007/s11095-008-9618-z ; Wang S. (2010), Polymeric Biomaterials for Tissue Engineering Applications, Int. J. Polym Sci, 2010, 148513, doi.org/10.1155/2010/148513 ; International Organization for Standardization 18192-1:2008. Implants for surgery: wear of total intervertebral spinal disc prostheses - part 1: loading and displacement parameters for wear testing and corresponding environmental conditions for test. ; Król P. (2008), Mechanical properties of crosslinked polyurethane elastomers based on well-defined prepolymers, J. Appl. Polymer Sci, 107, 1439, doi.org/10.1002/app.26482 ; Hallab N. (2003), Biomaterial optimization in total disc arthroplasty, Spine, 28, doi.org/10.1097/01.BRS.0000092214.87225.80 ; Meakin J. (2001), Replacing the nucleus pulposus of the intervertebral disk: prediction of suitable properties of a replacement material using finite element analysis, J Mater Sci Mater Med, 12, 207, doi.org/10.1023/A:1008954813910 ; Yao J. (2006), A three-dimensional nonlinear finite element analysis of the mechanical behavior of tissue engineered intervertebral discs under complex loads, Biomaterials, 27, 377, doi.org/10.1016/j.biomaterials.2005.06.036 ; Bahattab M. (2011), Characterization of polyurethane adhesives containing nanosilicas of different particle size, Int. J. Adhesion & Adhesives, 31, 97, doi.org/10.1016/j.ijadhadh.2010.11.001

DOI

10.2478/v10180-012-0007-0

×