Details

Title

The effect of pressure on heat transfer during pool boiling of water-Al2O3 and water-Cu nanofluids on stainless steel smooth tube

Journal title

Chemical and Process Engineering

Yearbook

2011

Issue

No 4 December

Authors

Keywords

pool boiling ; nanofluids ; operating pressure

Divisions of PAS

Nauki Techniczne

Coverage

321-332

Publisher

Polish Academy of Sciences Committee of Chemical and Process Engineering

Date

2011

Type

Artykuły / Articles

Identifier

DOI: 10.2478/v10176-011-0026-2 ; ISSN 2300-1925 (Chemical and Process Engineering)

Source

Chemical and Process Engineering; 2011; No 4 December; 321-332

References

Ahmed O. (2010), The effect of experimental techniques on the pool boiling of nanofluids, null. ; Bang I. (2005), Boiling heat transfer performance and phenomena of Al<sub>2</sub>O<sub>3</sub>- water nano-fluids from a plain surface in a pool, Int. J. Heat Mass Transf, 48, 2407, doi.org/10.1016/j.ijheatmasstransfer.2004.12.047 ; Benjamin R. (1997), Nucleation site density in pool boiling of saturated pure liquids: effect of surface microroughness and surface and liquid physical properties, Exp. Thermal Fluid Sci, 15, 32, doi.org/10.1016/S0894-1777(96)00168-9 ; Bergles A. (1985), Techniques to augment heat transfer. Handbook of heat transfer applications, 3. ; Bi S. (2011), Performance of a domestic refrigerator using TiO2-R600a nano-refrigerant as working fluid, Energy Conversion and Management, 52, 733, doi.org/10.1016/j.enconman.2010.07.052 ; Choi S. (1995), Developments and Applications of Non-Newtonian Flows, 99. ; Cieśliński J. (2007), Simulation of temperature field in cylindrical boiling heating section, Turbulence: Int. J, 12, 59. ; Cieśliński J. (2011), Pool boiling of water-Al<sub>2</sub>O<sub>3</sub>and water-Cu nanofluids on horizontal smooth tubes, Nanoscale Research Letters, 6, 220, doi.org/10.1186/1556-276X-6-220 ; Cieśliński J. (2012), Effect of nanofluid concentration on two-phase thermosyphon heat exchanger performance, null. ; Coursey J. (2008), Nanofluid boiling: The effect of surface wettability, Int. J. Heat Fluid Flow, 29, 1577, doi.org/10.1016/j.ijheatfluidflow.2008.07.004 ; Das S. (2003), Pool boiling characteristics of nano-fluids, Int. J. Heat Mass Transf, 46, 851, doi.org/10.1016/S0017-9310(02)00348-4 ; Das S. (2008), Survey on nucleate pool boiling of nanofluids: the effect of particle size relative to roughness, J. Nanopart. Res, 10, 1099, doi.org/10.1007/s11051-007-9348-x ; Hadad K. (2010), Neutronic study of nanofluids application to VVER-1000, Annals of Nuclear Energy, 37, 1447, doi.org/10.1016/j.anucene.2010.06.020 ; Judd R. (1976), A comprehensive model for nucleate pool boiling heat transfer including microlayer evaporation, ASME J. Heat Transf, 98, 623, doi.org/10.1115/1.3450610 ; Kang S. (2006), Experimental investigation of silver nano-fluid on heat pipe thermal performance, Appl. Thermal Eng, 26, 2377, doi.org/10.1016/j.applthermaleng.2006.02.020 ; Kashinath M. R., 2006. <i>Parameters affecting critical heat flux of nanofluids: heater size, pressure, orientation and anti-freeze addition</i>, MSc Thesis, The University of Texas at Arlington. ; Kathiravan R. (2010), Preparation and pool boiling characteristics of copper nanofluids over a flat plate heater, Int. J. Heat Mass Transf, 53, 1673, doi.org/10.1016/j.ijheatmasstransfer.2010.01.022 ; Kim S. (2007), Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux, Int. J. Heat Mass Transfer, 50, 4105, doi.org/10.1016/j.ijheatmasstransfer.2007.02.002 ; Kim S. (2010), Subcooled flow boiling heat transfer of dilute alumina, zinc oxide, and diamond nanofluids at atmospheric pressure, Nuclear Eng. Des, 240, 1186, doi.org/10.1016/j.nucengdes.2010.01.020 ; Kleinstreuer C. (2011), Experimental and theoretical studies of nanofluid thermal conductivity enhancement: A review, Nanoscale Res. Lett, 6, 229, doi.org/10.1186/1556-276X-6-229 ; Kwark S. (2010), Pool boiling characteristics of low concentration nanofluids, Int. J. Heat Mass Transfer, 53, 972, doi.org/10.1016/j.ijheatmasstransfer.2009.11.018 ; Leong K. (2010), Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator), Applied Thermal Engineering, 30, 2685, doi.org/10.1016/j.applthermaleng.2010.07.019 ; Li C. (2003), Experimental investigations on boiling of nano-particle suspensions, null. ; Liu Z.-H. (2010), Boiling characteristics of carbon nanotube suspensions under subatmospheric pressures, Int. J. Thermal Sci, 49, 1156, doi.org/10.1016/j.ijthermalsci.2010.01.023 ; Liu Z. (2008), Sorption and agglutination phenomenon of nanofluids on a plain heating surface during pool boiling, Int. J. Heat Mass Transf, 51, 2593, doi.org/10.1016/j.ijheatmasstransfer.2006.11.050 ; Liu Z. (2007), Boiling heat transfer characteristics of nanofluids in a flat heat pipe evaporator with micro-grooved heating surface, Int. J. Multiphase Flow, 33, 1284, doi.org/10.1016/j.ijmultiphaseflow.2007.06.009 ; Lotfi H. (2009), Boiling heat transfer on a high temperature silver sphere in nanofluid, Int. J. Thermal Sci, 48, 2215, doi.org/10.1016/j.ijthermalsci.2009.04.009 ; Marto P. (1992), Nucleate boiling characteristics of R-113 in small tube bundle, Transactions ASME J. Heat Transf, 114, 425, doi.org/10.1115/1.2911291 ; Narayan G. (2008), Effect of surface orientation on pool boiling heat transfer of nanoparticle suspensions, Int. J. Multiphase Flow, 34, 145, doi.org/10.1016/j.ijmultiphaseflow.2007.08.004 ; Shi M. (2006), Experimental study of pool boiling heat transfer for nanoparticle suspensions on a plate surface, null. ; Trisaksri V. (2009), Nucleate pool boiling heat transfer of TiO<sub>2</sub>-R141b nanofluids, Int. J. Heat Mass Transf, 52, 1582, doi.org/10.1016/j.ijheatmasstransfer.2008.07.041 ; Vassallo P. (2004), Pool boiling heat transfer experiments in silica-water nano-fluids, Int. J. Heat Mass Transf, 47, 407, doi.org/10.1016/S0017-9310(03)00361-2 ; Wang C. (1993), Effect of surface wettability on active nucleation site density during pool boiling of saturated water, ASME. J. Heat Transf, 115, 659, doi.org/10.1115/1.2910737 ; Wen D. (2005), Experimental investigation into the boiling heat transfer of aqueous based γ-alumina nanofluids, J. Nanopart. Res, 7, 265, doi.org/10.1007/s11051-005-3478-9 ; Yang X. (2011), Application of functionalized nanofluid in thermosyphon, Nanoscale Res. Lett, 6, 494, doi.org/10.1186/1556-276X-6-494 ; You S. (2003), Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer, Appl. Physics Lett, 83, 3374, doi.org/10.1063/1.1619206

Editorial Board

Editorial Board

Ali Mesbah, UC Berkeley, USA ORCID logo0000-0002-1700-0600

Anna Gancarczyk, Institute of Chemical Engineering, Polish Academy of Sciences, Poland ORCID logo0000-0002-2847-8992

Anna Trusek, Wrocław University of Science and Technology, Poland ORCID logo0000-0002-3886-7166

Bettina Muster-Slawitsch, AAE Intec, Austria ORCID logo0000-0002-5944-0831

Daria Camilla Boffito, Polytechnique Montreal, Canada ORCID logo0000-0002-5252-5752

Donata Konopacka-Łyskawa, Gdańsk University of Technology, Poland ORCID logo0000-0002-2924-7360

Dorota Antos, Rzeszów University of Technology, Poland ORCID logo0000-0001-8246-5052

Evgeny Rebrov, University of Warwick, UK ORCID logo0000-0001-6056-9520

Georgios Stefanidis, National Technical University of Athens, Greece ORCID logo0000-0002-4347-1350

Ireneusz Grubecki, Bydgoszcz Univeristy of Science and Technology, Poland ORCID logo0000-0001-5378-3115

Johan Tinge, Fibrant B.V., The Netherlands ORCID logo0000-0003-1776-9580

Katarzyna Bizon, Cracow University of Technology, Poland ORCID logo0000-0001-7600-4452

Katarzyna Szymańska, Silesian University of Technology, Poland ORCID logo0000-0002-1653-9540

Marcin Bizukojć, Łódź University of Technology, Poland ORCID logo0000-0003-1641-9917

Marek Ochowiak, Poznań University of Technology, Poland ORCID logo0000-0003-1543-9967

Mirko Skiborowski, Hamburg University of Technology, Germany ORCID logo0000-0001-9694-963X

Nikola Nikacevic, University of Belgrade, Serbia ORCID logo0000-0003-1135-5336

Rafał Rakoczy, West Pomeranian University of Technology, Poland ORCID logo0000-0002-5770-926X

Richard Lakerveld, Hong Kong University of Science and Technology, Hong Kong ORCID logo0000-0001-7444-2678

Tom van Gerven, KU Leuven, Belgium ORCID logo0000-0003-2051-5696

Tomasz Sosnowski, Warsaw University of Technology, Poland ORCID logo0000-0002-6775-3766



×