Details

Title

Extended finite element numerical analysis of scale effect in notched glass fiber reinforced epoxy composite

Journal title

Archive of Mechanical Engineering

Yearbook

2015

Volume

vol. 62

Issue

No 2

Affiliation

Khan, Mohammad N. : Department of Mechanical Engineering, College of Engineering, Majmaah University, Al-Majmaah, Saudi Arabia ; Alzafiri, Dhare : Department of Mechanical Engineering, College of Engineering, Majmaah University, Al-Majmaah, Saudi Arabia

Authors

Keywords

XFEM ; extended finite element method ; composite laminate ; fracture processing zone ; crack opening displacement

Divisions of PAS

Nauki Techniczne

Coverage

217-236

Publisher

Polish Academy of Sciences, Committee on Machine Building

Bibliography

[1] A. Valera-Medina, A. Giles, D. Pugh, S. Morris, M. Pohl, and A. Ortwein. Investigation of combustion of emulated biogas in a gas turbine test rig. Journal of Thermal Science, 27:331–340, 2018. doi: 10.1007/s11630-018-1024-1.
[2] K. Tanaka and I. Ushiyama. Thermodynamic performance analysis of gas turbine power plants with intercooler: 1st report, Theory of intercooling and performance of intercooling type gas turbine. Bulletin of JSME, 13(64):1210–1231, 1970. doi: 10.1299/jsme1958.13.1210.
[3] H.M. Kwon, T.S. Kim, J.L. Sohn, and D.W. Kang. Performance improvement of gas turbine combined cycle power plant by dual cooling of the inlet air and turbine coolant using an absorption chiller. Energy, 163:1050–1061, 2018. doi: 10.1016/j.energy.2018.08.191.
[4] A.T. Baheta and S.I.-U.-H. Gilani. The effect of ambient temperature on a gas turbine performance in part load operation. AIP Conference Proceedings, 1440:889–893, 2012. doi: 10.1063/1.4704300.
[5] F.R. Pance Arrieta and E.E. Silva Lora. Influence of ambient temperature on combined-cycle power-plant performance. Applied Energy, 80(3):261–272, 2005. doi: 10.1016/j.apenergy.2004.04.007.
[6] M. Ameri and P. Ahmadi. The study of ambient temperature effects on exergy losses of a heat recovery steam generator. In: Cen, K., Chi, Y., Wang, F. (eds) Challenges of Power Engineering and Environment. Springer, Berlin, Heidelberg, 2007. doi: 10.1007/978-3-540-76694-0_9.
[7] M.A.A. Alfellag: Parametric investigation of a modified gas turbine power plant. Thermal Science and Engineering Progress, 3:141–149, 2017. doi: 10.1016/j.tsep.2017.07.004.
[8] J.H. Horlock and W.A. Woods. Determination of the optimum performance of gas turbines. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 214:243–255, 2000. doi: 10.1243/0954406001522930.
[9] L. Battisti, R. Fedrizzi, and G. Cerri. Novel technology for gas turbine blade effusion cooling. In: Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Volume 3: Heat Transfer, Parts A and B. pages 491–501. Barcelona, Spain. May 8–11, 2006. doi: 10.1115/GT2006-90516.
[10] F.J. Wang and J.S. Chiou. Integration of steam injection and inlet air cooling for a gas turbine generation system. Energy Conversion and Management, 45(1):15–26, 2004. doi: 10.1016/S0196-8904 (03)00125-0.
[11] Z. Wang. 1.23 Energy and air pollution. In I. Dincer (ed.): Comprehensive Energy Systems, pp. 909–949. Elsevier, 2018. doi: 10.1016/B978-0-12-809597-3.00127-9.
[12] Z. Khorshidi, N.H. Florin, M.T. Ho, and D.E. Wiley. Techno-economic evaluation of co-firing biomass gas with natural gas in existing NGCC plants with and without CO$_2$ capture. International Journal of Greenhouse Gas Control, 49:343–363, 2016. doi: 10.1016/j.ijggc.2016.03.007.
[13] K. Mohammadi, M. Saghafifar, and J.G. McGowan. Thermo-economic evaluation of modifications to a gas power plant with an air bottoming combined cycle. Energy Conversion and Management, 172:619–644, 2018. doi: 10.1016/j.enconman.2018.07.038.
[14] S. Mohtaram, J. Lin, W. Chen, and M.A. Nikbakht. Evaluating the effect of ammonia-water dilution pressure and its density on thermodynamic performance of combined cycles by the energy-exergy analysis approach. Mechanika, 23(2):18110, 2017. doi: 10.5755/j01.mech.23.2.18110.
[15] M. Maheshwari and O. Singh. Comparative evaluation of different combined cycle configurations having simple gas turbine, steam turbine and ammonia water turbine. Energy, 168:1217–1236, 2019. doi: 10.1016/j.energy.2018.12.008.
[16] A. Khaliq and S.C. Kaushik. Second-law based thermodynamic analysis of Brayton/Rankine combined power cycle with reheat. Applied Energy, 78(2):179–197, 2004. doi: 10.1016/j.apenergy.2003.08.002.
[17] M. Aliyu, A.B. AlQudaihi, S.A.M. Said, and M.A. Habib. Energy, exergy and parametric analysis of a combined cycle power plant. Thermal Science and Engineering Progress. 15:100450, 2020. doi: 10.1016/j.tsep.2019.100450.
[18] M.N. Khan, T.A. Alkanhal, J. Majdoubi, and I. Tlili. Performance enhancement of regenerative gas turbine: air bottoming combined cycle using bypass valve and heat exchanger—energy and exergy analysis. Journal of Thermal Analysis and Calorimetry. 144:821–834, 2021. doi: 10.1007/s10973-020-09550-w.
[19] F. Rueda Martínez, A. Rueda Martínez, A. Toleda Velazquez, P. Quinto Diez, G. Tolentino Eslava, and J. Abugaber Francis. Evaluation of the gas turbine inlet temperature with relation to the excess air. Energy and Power Engineering, 3(4):517–524, 2011. doi: 10.4236/epe.2011.34063.
[20] A.K. Mohapatra and R. Sanjay. Exergetic evaluation of gas-turbine based combined cycle system with vapor absorption inlet cooling. Applied Thermal Engineering, 136:431–443, 2018. doi: 10.1016/j.applthermaleng.2018.03.023.
[21] A.A. Alsairafi. Effects of ambient conditions on the thermodynamic performance of hybrid nuclear-combined cycle power plant. International Journal of Energy Research, 37(3):211–227, 2013. doi: 10.1002/er.1901.
[22] A.K. Tiwari, M.M. Hasan, and M. Islam. Effect of ambient temperature on the performance of a combined cycle power plant. Transactions of the Canadian Society for Mechanical Engineering, 37(4):1177–1188, 2013. doi: 10.1139/tcsme-2013-0099.
[23] T.K. Ibrahim, M.M. Rahman, and A.N. Abdalla. Gas turbine configuration for improving the performance of combined cycle power plant. Procedia Engineering, 15:4216–4223, 2011. doi: 10.1016/j.proeng.2011.08.791.
[24] M.N. Khan and I. Tlili. New advancement of high performance for a combined cycle power plant: Thermodynamic analysis. Case Studies in Thermal Engineering. 12:166–175, 2018. doi: 10.1016/j.csite.2018.04.001.
[25] S.Y. Ebaid and Q.Z. Al-hamdan. Thermodynamic analysis of different configurations of combined cycle power plants. Mechanical Engineering Research. 5(2):89–113, 2015. doi: 10.5539/mer.v5n2p89.
[26] R. Teflissi and A. Ataei. Effect of temperature and gas flow on the efficiency of an air bottoming cycle. Journal of Renewable and Sustainable Energy, 5(2):021409, 2013. doi: 10.1063/1.4798486.
[27] A.A. Bazmi, G. Zahedi, and H. Hashim. Design of decentralized biopower generation and distribution system for developing countries. Journal of Cleaner Production, 86:209–220, 2015. doi: 10.1016/j.jclepro.2014.08.084.
[28] A.I. Chatzimouratidis and P.A. Pilavachi. Decision support systems for power plants impact on the living standard. Energy Conversion and Management, 64:182–198, 2012. doi: 10.1016/j.enconman.2012.05.006.
[29] T.K. Ibrahim, F. Basrawi, O.I. Awad, A.N. Abdullah, G. Najafi, R. Mamat, and F.Y. Hagos. Thermal performance of gas turbine power plant based on exergy analysis. Applied Thermal Engineering, 115:977–985, 2017. doi: 10.1016/j.applthermaleng.2017.01.032.
[30] M. Ghazikhani, I. Khazaee, and E. Abdekhodaie. Exergy analysis of gas turbine with air bottoming cycle. Energy, 72:599–607, 2014. doi: 10.1016/j.energy.2014.05.085.
[31] M.N. Khan, I. Tlili, and W.A. Khan. thermodynamic optimization of new combined gas/steam power cycles with HRSG and heat exchanger. Arabian Journal for Science and Engineering, 42:4547–4558, 2017. doi: 10.1007/s13369-017-2549-4.
[32] N. Abdelhafidi, İ.H. Yılmaz, and N.E.I. Bachari. An innovative dynamic model for an integrated solar combined cycle power plant under off-design conditions. Energy Conversion and Management, 220:113066, 2020. doi: 10.1016/j.enconman.2020.113066.
[33] T.K. Ibrahim, M.K. Mohammed, O.I. Awad, M.M. Rahman, G. Najafi, F. Basrawi, A.N. Abd Alla, and R. Mamat. The optimum performance of the combined cycle power plant: A comprehensive review. Renewable and Sustainable Energy Reviews, 79:459–474, 2017. doi: 10.1016/j.rser.2017.05.060.
[34] M.N. Khan. Energy and exergy analyses of regenerative gas turbine air-bottoming combined cycle: optimum performance. Arabian Journal for Science and Engineering, 45:5895–5905, 2020. doi: 10.1007/s13369-020-04600-9.
[35] A.M. Alklaibi, M.N. Khan, and W.A. Khan. Thermodynamic analysis of gas turbine with air bottoming cycle. Energy, 107:603–611, 2016. doi: 10.1016/j.energy.2016.04.055.
[36] M. Ghazikhani, M. Passandideh-Fard, and M. Mousavi. Two new high-performance cycles for gas turbine with air bottoming. Energy, 36(1):294–304, 2011. doi: 10.1016/j.energy.2010.10.040.
[37] M.N. Khan and I. Tlili. Innovative thermodynamic parametric investigation of gas and steam bottoming cycles with heat exchanger and heat recovery steam generator: Energy and exergy analysis. Energy Reports, 4:497–506, 2018. doi: 10.1016/j.egyr.2018.07.007.
[38] M.N. Khan and I. Tlili. Performance enhancement of a combined cycle using heat exchanger bypass control: A thermodynamic investigation. Journal of Cleaner Production, 192:443–452, 2018. doi: 10.1016/j.jclepro.2018.04.272.
[39] M. Korobitsyn. Industrial applications of the air bottoming cycle. Energy Conversion and Management, 43(9-12):1311–1322, 2002. doi: 10.1016/S0196-8904(02)00017-1.
[40] T.K. Ibrahim and M.M. Rahman. optimum performance improvements of the combined cycle based on an intercooler–reheated gas turbine. Journal of Energy Resources Technology, 137(6):061601, 2015. doi: 10.1115/1.4030447.

Date

14.08.2015

Type

Artykuły / Articles

Identifier

DOI: 10.1515/meceng-2015-0013 ; ISSN 0004-0738, e-ISSN 2300-1895

Source

Archive of Mechanical Engineering; 2015; vol. 62; No 2; 217-236

References

Aymerich (2008), Prediction of impact - induced delamination in cross - ply composite laminates using cohesive interface elements and Technology, Composites Science, 68, 2383, doi.org/10.1016/j.compscitech.2007.06.015 ; Jackson (1992), Scale effects in the response and failure of fiber reinforced composite laminates loaded in tension and in flexure of composite materials, Journal, 26, 2674. ; Wisnom (1997), Reduction in tensile and flexural strength of unidirectional glass fiber - epoxy with increasing specimen size, Compos Struct, 38, 405, doi.org/10.1016/S0263-8223(97)00075-5 ; Bazant (2000), Size effect, Int J Solids Struct, 37, 69, doi.org/10.1016/S0020-7683(99)00077-3 ; Hitchon (1978), The effect of specimen size on the strength of CFRP, Composites, 9, 119, doi.org/10.1016/0010-4361(78)90590-6 ; Krishnamoorthy (2009), Delamination Analysis in Drilling of CFRP Composites Using Response Surface Methodology of Composite Materials Vol No pp, Journal, 43, 2885. ; Wisnom (2008), Size effects in unnotched tensile strength of unidirectional and quasi - isotropic carbon / epoxy composites, Composite Structures, 84, 21, doi.org/10.1016/j.compstruct.2007.06.002 ; Planas (2001), Reinterpretation of Karihaloo s size effect analysis for notched quasibrittle structures of fracture, international journal, 111, 17. ; Goangseup (2003), Eigenvalue method for computing size effect of cohesive cracks with residual stress with application to kink - bands in composites of engineering science Vol pp, international journal, 41, 1519. ; Soutis (2008), Scaling effects in notched carbon fibre / epoxy composites loaded in compression, Journal of Materials Science, 43, 6593, doi.org/10.1007/s10853-008-2807-7 ; Vaddadi (2003), Transient hygrothermal stresses in fiber reinforced composites : a heterogeneous characterization approach A : and Manufacturing, Composites Part Applied Science, 34, 719, doi.org/10.1016/S1359-835X(03)00135-0 ; Maimi (2012), Nominal strength of Quasibrittle open hole specimens Compos, Sci Technol, 72. ; Bing (2008), Specimen size effect in off - axis compression tests of fiber composites : Engineering, Composites Part B, 39, 20, doi.org/10.1016/j.compositesb.2007.02.010 ; Bazânt (2004), Size effect on flexural strength of fiber - composite laminates, J Eng Mater Technol, 126, 29, doi.org/10.1115/1.1631031 ; Dvorak (1999), Size effect in fracture of unidirectional composite plates, Int J Fract, 95, 89, doi.org/10.1023/A:1018687931394 ; ASTM (2001), Standard Test Method for In - Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a Laminate PA Am Test, Soc Mater, 45, 3518. ; Tsao (2008), Thrust Force and Delamination of Core Saw Drill During Drilling of Carbon Fiber Reinforced Plastics of Advanced Manufacturing Technology Vol pp, International Journal, 37, 23. ; ASTM (1981), Standard Method of Test for Plane Strain Fracture Toughness in Metallic Materials for Testing and Materials Philadelphia, American Society, 81, 399. ; Wisnom (2010), Scaling Effects in Notched Composites Composite Materials, Journal of, 44, 195. ; ASTM (null), Standard test method constituent of composite material for Testing and Materials, American Society, 99, 3171. ; Dolbow (1999), Mo es A finite element method for crack growth without remeshing for Numerical Methods in Engineering Vol No pp, International Journal, 46, 132. ; Mohamed (2012), Prediction of nominal strength of composite structure open hole specimen through cohesive laws of mechanical & mechanical Engineering IJMME pp http www ijens org IJMME Vol Issue html, international journal, 12, 1. ; Melenk (1996), The partition of unity finite element method : Basic theory and applications Meth App, Comput, 289. ; Hojo (1994), Influence of clamping method on tensile properties of unidirectional CFRP in and directions round robin activity for international standardization in Japan, Composites, 0, 786, doi.org/10.1016/0010-4361(94)90139-2 ; Belytschko (1999), Elastic crack growth in finite elements with minimal remeshing Numer Meth Engng, Int, 45, 601. ; Qian (2012), Zhen - dong Fracture properties of epoxy asphalt mixture based on extended finite element method of Central South University, Journal, 19, 3335. ; Lee (2008), Measuring the notched compressive strength of composite laminates : Specimen size effects and Technology, Composites Science, 68, 2359, doi.org/10.1016/j.compscitech.2007.09.003 ; ASTM (null), Standard test method for tensile properties of polymer matrix composite materials West Conshohocken ( PA ) : American Society for Testing and Materials, USA, 3039. ; Bullock (1974), Strength ratios of composite materials in flexure and in tension, J Compos Mater, 8, 200, doi.org/10.1177/002199837400800209 ; Balzani (2008), An interface element for the simulation of delamination in unidirectional fiber - reinforced composite laminates, Engineering Fracture Mechanics, 9, 75. ; Sukumar (2000), es Extended finite element method for threedimensional crack modeling for Numerical Methods in Engineering Vol No pp, International Journal, 48, 1549. ; Bazânt (1996), Size effect and fracture characteristics of composite laminates, J Eng Mater Technol, 118, 317, doi.org/10.1115/1.2806812 ; Curiel Sosa (2012), Delamination modelling of GLARE using the extended finite element method and Technology, Composites Science, 7, 72.
×