Details

Title

Mechanical Properties of Two Manganese Steels

Journal title

Archives of Foundry Engineering

Yearbook

2012

Numer

No 1

Publication authors

Keywords

Theory of crystallization ; mechanical properties ; high manganese steels ; Reduction of area ; Precipitates

Divisions of PAS

Nauki Techniczne

Description

Archives of Foundry Engineering continues the publishing activity started by Foundry Commission of the Polish Academy of Sciences (PAN) in Katowice in 1978. The initiator of it was the first Chairman Professor Dr Eng. Wacław Sakwa – Corresponding Member of PAN, Honorary Doctor of Czestochowa University of Technology and Silesian University of Technology. This periodical first name was „Solidification of Metals and Alloys” , and made possible to publish the results of works achieved in the field of the Basic Problems Research Cooperation. The subject of publications was related to the title of the periodical and concerned widely understand problems of metals and alloys crystallization in a casting mold. In 1978-2000 the 44 issues have been published. Since 2001 the Foundry Commission has had patronage of the annually published “Archives of Foundry” and since 2007 quarterly published “Archives of Foundry Engineering”. Thematic scope includes scientific issues of foundry industry:

  • Theoretical Aspects of Casting Processes,
  • Innovative Foundry Technologies and Materials,
  • Foundry Processes Computer Aiding,
  • Mechanization, Automation and Robotics in Foundry,
  • Transport Systems in Foundry,
  • Castings Quality Management,
  • Environmental Protection.

Abstract

The article is focused on thermomechanical and plastic properties of two high-manganese TRIPLEX type steels with an internal marking 1043 and 1045. Tensile tests at ambient temperature and at a temperature interval 600°C to 1100°C were performed for these heats with a different chemical composition. After the samples having been ruptured, ductility was observed which was expressed by reduction of material after the tensile test. Then the stacking fault energy was calculated and dilatation of both high-manganese steels was measured. At ambient temperature (20°C), 1043 heat featured higher tensile strength by 66MPa than 1045 heat. Microhardness was higher by 8HV0,2 for 1045 steel than for 1043 steel (203HV0,2). At 20°C, ductility only differed by 3% for the both heats. Decrease of tensile properties occurred at higher temperatures of 600 up to 1100°C. This tensile properties decrease at high temperatures is evident for most of metals. The strength level difference of the both heats in the temperature range 20°C up to 1100°C corresponded to 83 MPa, while between 600°C and 1100°C the difference was only 18 MPa. In the temperature range 600°C to 800°C, a decrease in ductility values down to 14 % (1045 heat), or 22 % (1043 heat), was noticed. This decrease was accompanied with occurrence of complex Aluminium oxides in a superposition with detected AlN particles. Further ductility decrease was only noted for 1043 heat where higher occurrence of shrinkag porosity was observed which might have contributed to a slight decrease in reduction of area values in the temperature range 900°C to 1100°C, in contrast to 1045 heat matrix.

Publisher

The Katowice Branch of the Polish Academy of Sciences

Date

2012

Type

Artykuły / Articles

Identifier

ISSN 2299-2944

References

Frommeyer G. (2006), Steels, Steel Research Int, 77, 9-10, 627. ; Kim S. (2007), Development of TWIP Steel for Automotive Applications, null, 6, 690. ; Sato, K. et al. (1989). Effect of Deformation Induced Phase Transformation and Twinning on the Mechanical Properties of Austenite Fe-Mn-Al Alloys. 868-877. ; Schumann V. (1972), Neue Hütte, 17, 605. ; Mazancová E. (2007), New Material Types for Automotive Industry - Physical Engineering Properties of High Strength Material Alloyed With Manganese and of Metal Hydrides Alloys for Hydrogen Storage. ; Blech W. (2007), Steel Research Int, 78, 536, doi.org/10.1002/srin.200706245 ; Mintz B. (2003), Mater. Sci. Tech, 19, 184, doi.org/10.1179/026708303225009409 ; Chimani C. (2005), Ironmaking and Steelmaking, 32, 75, doi.org/10.1179/174328105X15814 ; Mazancová E. (2009), Metallic Mater, 47, 1. ; Mazancová E. (2010), Metallurgical Jnl, 63, 55. ; Mintz B. (1991), Int. Mater. Rev, 187, doi.org/10.1179/imr.1991.36.1.187

DOI

10.2478/v10266-012-0002-4

×