Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 3
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

Statistical Process Control (SPC) based on the well known Shewhart control charts, is widely used in contemporary manufacturing industry, including many foundries. However, the classic SPC methods require that the measured quantities, e.g. process or product parameters, are not auto-correlated, i.e. their current values do not depend on the preceding ones. For the processes which do not obey this assumption the Special Cause Control (SCC) charts were proposed, utilizing the residual data obtained from the time-series analysis. In the present paper the results of application of SCC charts to a green sand processing system are presented. The tests, made on real industrial data collected in a big iron foundry, were aimed at the comparison of occurrences of out-of-control signals detected in the original data with those appeared in the residual data. It was found that application of the SCC charts reduces numbers of the signals in almost all cases It is concluded that it can be helpful in avoiding false signals, i.e. resulting from predictable factors.
Przejdź do artykułu

Abstrakt

The purpose of this paper was testing suitability of the time-series analysis for quality control of the continuous steel casting process in production conditions. The analysis was carried out on industrial data collected in one of Polish steel plants. The production data concerned defective fractions of billets obtained in the process. The procedure of the industrial data preparation is presented. The computations for the time-series analysis were carried out in two ways, both using the authors’ own software. The first one, applied to the real numbers type of the data has a wide range of capabilities, including not only prediction of the future values but also detection of important periodicity in data. In the second approach the data were assumed in a binary (categorical) form, i.e. the every heat(melt) was labeled as ‘Good’ or ‘Defective’. The naïve Bayesian classifier was used for predicting the successive values. The most interesting results of the analysis include good prediction accuracies obtained by both methodologies, the crucial influence of the last preceding point on the predicted result for the real data time-series analysis as well as obtaining an information about the type of misclassification for binary data. The possibility of prediction of the future values can be used by engineering or operational staff with an expert knowledge to decrease fraction of defective products by taking appropriate action when the forthcoming period is identified as critical.
Przejdź do artykułu

Abstrakt

The aim of the paper was an attempt at applying the time-series analysis to the control of the melting process of grey cast iron in production conditions. The production data were collected in one of Polish foundries in the form of spectrometer printouts. The quality of the alloy was controlled by its chemical composition in about 0.5 hour time intervals. The procedure of preparation of the industrial data is presented, including OCR-based method of transformation to the electronic numerical format as well as generation of records related to particular weekdays. The computations for time-series analysis were made using the author’s own software having a wide range of capabilities, including detection of important periodicity in data as well as regression modeling of the residual data, i.e. the values obtained after subtraction of general trend, trend of variability amplitude and the periodical component. The most interesting results of the analysis include: significant 2-measurements periodicity of percentages of all components, significance 7-day periodicity of silicon content measured at the end of a day and the relatively good prediction accuracy obtained without modeling of residual data for various types of expected values. Some practical conclusions have been formulated, related to possible improvements in the melting process control procedures as well as more general tips concerning applications of time-series analysis in foundry production.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji