Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:

Abstract

The main goal of the considered work is to adjust mathematical modeling for mass transfer, to specific conditions resulting from presence of chemical surface reactions in the flow of the mixture consisting of helium and methanol. The thermocatalytic devices used for decomposition of organic compounds incorporate microchannels coupled at the ends and heated to 500 ◦C at the walls regions. The experiment data were compared with computational fluid dynamics results to calibrate the constants of the model’s user defined functions. These extensions allow to transform the calculations mechanisms and algorithms of commercial codes adapting them for the microflows cases and increased chemical reactions rate on the interphase between fluid and solid, specific for catalytic reactions. Results obtained on the way of numerical calculations have been calibrated and compared with the experimental data to receive satisfactory compliance. The model has been verified and the performance of the thermocatalytic reactor with microchannels under hydrogen production regime has been investigated.
Go to article

Abstract

In this paper a three-dimensional model for determination of a microreactor's length is presented and discussed. The reaction of thermocatalytic decomposition has been implemented on the base of experimental data. Simplified Reynolds-Maxwell formula for the slip velocity boundary condition has been analysed and validated. The influence of the Knudsen diffusion on the microreactor's performance has also been verified. It was revealed that with a given operating conditions and a given geometry of the microreactor, there is no need for application of slip boundary conditions and the Knudsen diffusion in further analysis. It has also been shown that the microreactor's length could be practically estimated using standard models.
Go to article

Abstract

The conversion of a waste heat energy to electricity is now becoming one of the key points to improve the energy efficiency in a process engineering. However, large losses of a low-temperature thermal energy are also present in power engineering. One of such sources of waste heat in power plants are exhaust gases at the outlet of boilers. Through usage of a waste heat regeneration system it is possible to attain a heat rate of approximately 200 MWth, under about 90°C, for a supercritical power block of 900 MWelfuelled by a lignite. In the article, we propose to use the waste heat to improve thermal efficiency of the Szewalski binary vapour cycle. The Szewalski binary vapour cycle provides steam as the working fluid in a high temperature part of the cycle, while another fluid – organic working fluid – as the working substance substituting conventional steam over the temperature range represented by the low pressure steam expansion. In order to define in detail the efficiency of energy conversion at various stages of the proposed cycle the exergy analysis was performed. The steam cycle for reference conditions, the Szewalski binary vapour cycle as well as the Szewalski hierarchic vapour cycle cooperating with a system of waste heat recovery have been comprised.
Go to article

Abstract

The article presents a zero-dimensional mathematical model of a tubular fuel cell and its verification on four experiments. Despite the fact that fuel cells are still rarely used in commercial applications, their use has become increasingly more common. Computational Flow Mechanics codes allow to predict basic parameters of a cell such as current, voltage, combustion composition, exhaust temperature, etc. Precise models are particularly important for a complex energy system, where fuel cells cooperate with gas, gas-steam cycles or ORCs and their thermodynamic parameters affect those systems. The proposed model employs extended Nernst equation to determine the fuel cell voltage and steadystate shifting reaction equilibrium to calculate the exhaust composition. Additionally, the reaction of methane reforming and the electrochemical reaction of hydrogen and oxygen have been implemented into the model. The numerical simulation results were compared with available experiment results and the differences, with the exception of the Tomlin experiment, are below 5%. It has been proven that the increase in current density lowers the electrical efficiency of SOFCs, hence fuel cells typically work at low current density, with a corresponding efficiency of 45–50% and with a low emission level (zero emissions in case of hydrogen combustion).
Go to article

Abstract

In this paper, thermodynamic analysis of a proposed innovative double Brayton cycle with the use of oxy combustion and capture of CO2, is presented. For that purpose, the computation flow mechanics (CFM) approach has been developed. The double Brayton cycle (DBC) consists of primary Brayton and secondary inverse Brayton cycle. Inversion means that the role of the compressor and the gas turbine is changed and firstly we have expansion before compression. Additionally, the workingfluid in the DBC with the use of oxy combustion and CO2 capture contains a great amount of H2O and CO2, and the condensation process of steam (H2O) overlaps in negative pressure conditions. The analysis has been done for variants values of the compression ratio, which determines the lowest pressure in the double Brayton cycle.
Go to article

Abstract

The paper presents thermodynamic analysis of the gas-steam unit of the 65 MWe combined heat and power station. Numerical analyses of the station was performed for the nominal operation conditions determining the Brayton and combined cycle. Furthermore, steam utilization for the gas turbine propulsion in the Cheng cycle was analysed. In the considered modernization, steam generated in the heat recovery steam generator unit is directed into the gas turbine combustion chamber, resulting in the Brayton cycle power increase. Computational flow mechanics codes were used in the analysis of the thermodynamic and operational parameters of the unit.
Go to article

This page uses 'cookies'. Learn more