Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy publikacji
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 2
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

Megasporogenesis and female gametophyte development were investigated in ovules of the everbearing strawberry Fragaria x ananassa Duch. cv. Selva. Observations of thin sections revealed that ovule development starts from the formation of a nucellus and coincides in time with the beginning of receptacle overgrowth. The most characteristic feature during nucellus differentiation is the formation of a multicellular archesporium, beginning from at least two cells. Analysis of female gametophyte development indicated that in addition to the meiotic mode, female gametophytes develop by an apomeiotic mode of Antennaria type. Asynchronous development of female gametophytes of different origin occurs. The mature, eight-nucleate, seven-celled female gametophyte of meiotic origin is cylindrical and slightly curved. It occupies the central part of the nucellus. The egg apparatus, consisting of an egg cell and two synergids, is formed in the micropylar part of the female gametophyte; the opposite chalazal pole is occupied by antipodal cells. Besides the ovule in which only one seven-celled female gametophyte finally develops, ovules with a different number of cells were observed to initiate female gametophyte development. Some ovules contain a nucellus with a tetrad of linearly arranged megaspores surrounded by enlarged cells, each of which has the potential to develop into an apomictic female gametophyte. After degeneration of some post-meiotic cells or developmentally advanced female gametophytes, some of the chalazal cells initiated female gametophyte development.
Przejdź do artykułu

Abstrakt

This article presents the results of the study of changes in mineral and chemical composition of artificial aggregates consisting of coal shale (a hard coal mining waste) and fluidized ashes. Such an aggregate was used for road construction. After completion of the construction works but before making the road available for public use, significant deformation of the surface in the form of irregular buckling of the asphalt layer occurred. It was excluded that this resulted from mining damage, design errors or performance mistakes, among others. A study of the materials that had been incorporated in the construction layers was undertaken in order to find the component and the mechanism responsible for the buckling of the road surface. A comparison of the mineral and chemical composition of aggregate samples collected from the embankment where the road buckled with the reference sample and samples from places without deformations showed that the bumps in the road embankment consisted of minerals that were not initially present in the aggregate. Wastes produced as a result of high temperatures (slag and power plants ashes, metallurgical wastes) are not as stable in terms of chemical and phase composition in the hypergenic environment. As a result of the processes occurring in the road embankment, anhydrite, which is the primary component of fluidized ashes, was transformed into gypsum and ettringite. As a result of contact with water CaO (present in fluidized ashes) easily changed into calcium hydroxide. As the crystallization of these minerals is expansive, it resulted in the filling of pores and, in extreme cases, in a substantial increase in the volume of the aggregate and, consequently, in the deformation of the road surface.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji