Search results

Filters

  • Journals
  • Date

Search results

Number of results: 14
items per page: 25 50 75
Sort by:

Abstract

In the last two decades several new concepts of photodetectors to improve their performance have been proposed. New strategies are especially addressed to the group of so called high-operating-temperature detectors where - apart from increasing of operating temperature - both the size and power consumption reduction is expected. In this paper a new strategy in the photo-detector design is presented - the barrier detectors: CnBn; CnBnN+, CpBn and unipolar barrier photodiodes. In spite of considering barrier detectors based on AIIIBV bulk compounds and type-II superlattices as having theoretically a better performance than those based on HgCdTe, the latter compound is also used to fabricate barrier detectors. Among many new applications of barrier detectors the detection of explosives can be extremely important due to an increased threat of terrorist attacks. This paper presents the status of the barrier detectors and compares the performance of mid-wave HgCdTe barrier detectors and unipolar barrier photodiodes.
Go to article

Abstract

The paper presents the application of similarity theory to investigations of transient heat transfer in materials with complex structure. It describes the theoretical-experimental method for identification and design of the structure of two-component composite walls based on the research of the thermal diffusivity for the composite and its matrix separately. The thermal diffusivity was measured by means of the modified flash method. The method was tested on two samples of double-layer ‘epoxy resin – polyamide’. All the investigated samples had the same diameter of 12 mm and thickness ranging from 1.39–2.60 mm and their equivalent value of thermal diffusivity ranging from (1.21–1.98)×10-7m2/s. Testing the method and research on carbon/epoxy composites was carried out at temperatures close to room temperature.
Go to article

Abstract

The paper presents the method and results of low-frequency noise measurements of modern mid-wavelength infrared photodetectors. A type-II InAs/GaSb superlattice based detector with nBn barrier architecture is compared with a high operating temperature (HOT) heterojunction HgCdTe detector. All experiments were made in the range 1 Hz - 10 kHz at various temperatures by using a transimpedance detection system, which is examined in detail. The power spectral density of the nBn’s dark current noise includes Lorentzians with different time constants while the HgCdTe photodiode has more uniform 1/f - shaped spectra. For small bias, the low-frequency noise power spectra of both devices were found to scale linearly with bias voltage squared and were connected with the fluctuations of the leakage resistance. Leakage resistance noise defines the lower noise limit of a photodetector. Other dark current components give raise to the increase of low-frequency noise above this limit. For the same voltage biasing devices, the absolute noise power densities at 1 Hz in nBn are 1 to 2 orders of magnitude lower than in a MCT HgCdTe detector. In spite of this, low-frequency performance of the HgCdTe detector at ~ 230K is still better than that of InAs/GaSb superlattice nBn detector.
Go to article

Abstract

The paper reports on the photoelectrical performance of the long wavelength infrared (LWIR) HgCdTe high operating temperature (HOT) detector. The detector structure was simulated with commercially available software APSYS by Crosslight Inc. taking into account SRH, Auger and tunnelling currents. A detailed analysis of the detector performance such as dark current, detectivity, time response as a function of device architecture and applied bias is performed, pointing out optimal working conditions.
Go to article

Abstract

The paper reports on a long-wave infrared (cut-off wavelength ~ 9 μm) HgCdTe detector operating under nbiased condition and room temperature (300 K) for both short response time and high detectivity operation. The ptimal structure in terms of the response time and detectivity versus device architecture was shown. The response time of the long-wave (active layer Cd composition, xCd = 0.19) HgCdTe detector for 300 K was calculated at a level of τs ~ 1 ns for zero bias condition, while the detectivity − at a level of D* ~ 109 cmHz1/2/W assuming immersion. It was presented that parameters of the active layer and P+ barrier layer play a critical role in order to reach τs ≤ 1 ns. An extra series resistance related to the processing (RS+ in a range 5−10 Ω) increased the response time more than two times (τs ~ 2.3 ns).
Go to article

Abstract

The article presents state of work in technology of free-space optical communications (Free Space Optics − FSO). Both commercially available optical data links and their further development are described. The main elements and operation limiting factors of FSO systems have been identified. Additionally, analyses of FSO/RF hybrid systems application are included. The main aspects of LasBITer project related to such hybrid technology for security and defence applications are presented.
Go to article

Abstract

In the paper recent progress at VIGO/MUT (Military University of Technology) MOCVD Laboratory in the growth of Hg1-xCdxTe (HgCdTe) multilayer heterostructures on GaAs/CdTe substrates is presented. The optimum conditions for the growth of single layers and complex multilayer heterostructures have been established. One of the crucial stages of HgCdTe epitaxy is CdTe nucleation on GaAs substrate. Successful composite substrates have been obtained with suitable substrate preparation, liner and susceptor treatment, proper control of background fluxes and appropriate nucleation conditions. The other critical stage is the interdi#27;used multilayer process (IMP). The growth of device-quality HgCdTe heterostructures requires complete homogenization of CdTe-HgTe pairs preserving at the same time suitable sharpness of composition and doping profiles. This requires for IMP pairs to be very thin and grown in a short time. Arsenic and iodine have been used for acceptor and donor doping. Suitable growth conditions and post growth anneal is essential for stable and reproducible doping. In situ anneal seems to be sufficient for iodine doping at any required level. In contrast, efficient As doping with near 100% activation requires ex situ anneal at near saturated mercury vapours. As a result we are able to grow multilayer fully doped (100) and (111) heterostructures for various infrared devices including photoconductors, photoelectromagnetic and photovoltaic detectors. The present generation of uncooled long wavelength infrared devices is based on multijunction photovoltaic devices. The technology steps in fabrication of devices are described. It is shown that near-BLIP performance is possible to achieve at ≈ 230 K with optical immersion. These devices are especially promising as 7.8–9.5 um detectors, indicating the potential for achieving detectivities above 109 cmHz1/2/W.
Go to article

Abstract

In this work we report simulation and experimental results for an MWIR HgCdTe photodetector designed by computer simulation and fabricated in a joint laboratory run by VIGO Sytems S.A. and Military University of Technology. The device is based on a modified N+pP+ heterostructure grown on 2”., epiready, semi-insulating (100) GaAs substrates in a horizontal MOCVD AIX 200 reactor. The devices were examined by measurements of spectral and time responses as a function of a bias voltage and operating temperatures. The time response was measured with an Optical Parametric Oscillator (OPO) as the source of ~25 ps pulses of infrared radiation, tuneable in a 1.55–16 μm spectral range. Two-stage Peltier cooled devices (230 K) with a 4.1 μm cut-off wavelength were characterized by 1.6 × 1012 cm Hz1/2/W peak detectivity and < 1 ns time constant for V > 500 mV.
Go to article

Abstract

We used DPPH scavenging assays to study the antioxidant activity of three native Polish species of blackberry leaves (Rubus kuleszae Ziel., R. fabrimontanus (Sprib.) Sprib. and R. capitulatus Utsch.). All the studied extracts (methanolic, water, methanolic-water) showed high DPPH free radical scavenging activity (IC50 450.0-186.0 μg/ml). The most effective of the studied species was Rubus kuleszae. Total content of phenolic compounds (70.50-136.04 mg GAE/g) and phenolic acids (14.70-38.26 mg CAE/g) was determined spectrophotometrically. Antioxidant activity correlated positively with total content of phenolic compounds and phenolic acids.
Go to article

This page uses 'cookies'. Learn more