Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 18
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

StreszczenieW artykule przedstawiam zalety traktowania dyrektywalnej teorii znaczenia (DTZ) jako wspólcześnie rozumianej teorii znaczenia wąskiego. Rozpoczynam od sformułowania siedmiu postulatów, które udana teoria znaczenia wąskiego powinna spełniać. Następnie kontrastuję teorię dyrektywalną z semantyką ról pojeciowych Neda Blocka. Dwa aspekty tej teorii zostają włczone do DTZ - jej naturalizm i dodatkowy, czwarty typ dyrektyw znaczeniowych. W dalszej części artykułu pokazuję jak skorzystanie z DTZ w charakterze teorii znaczenia wąskiego pozwala na uniknięcie pewnych dobrze znanych wad semantyk funkcjonalnych. Na zakończenie pokazuję w jaki sposób zmodyfikowana DTZ spełnia siedem postulatów, od których rozpoczajem, i zarysowuję krótko dalsze drogi rozwoju dla tej teorii.
Przejdź do artykułu

Abstrakt

The constantly developing and the broadly understood automation of production processes in foundry industry, creates both new working conditions - better working standards, faster and more accurate production - and new demands for previously used materials as well as opportunities to generate new foundry defects. Those high requirements create the need to develop further the existing elements of the casting production process. This work focuses on mechanical and thermal deformation of moulding sands prepared in hot-box technology. Moulding sands hardened in different time periods were tested immediately after hardening and after cooling. The obtained results showed that hardening time period in the range 30-120 sec does not influence the mechanical deformation of tested moulding sands significantly. Hot distortion tests proved that moulding sands prepared in hot-box technology can be characterized with stable thermal deformation up to the temperature of circa 320oC.
Przejdź do artykułu

Abstrakt

This paper focuses on mechanical properties of self hardening moulding sands with furfuryl and alkyd binders. Elasticity as a new parameter of moulding sands is investigated. With the use of presented testing equipment, it is possible to determine force kinetics and deformation of moulding sand in real time. The need for this kind of study comes from the modern casting industry. New foundries can be characterized with high intensity of production which is correlated with high level of mechanization and automatization of foundry processes. The increasingly common use of manipulators in production of moulds and cores can lead to generation of new types of flaws, caused by breakage in moulds and cores which could occur during mould assembly. Hence it is required that moulds and cores have high resistance to those kinds of factors, attributing it with the phenomenon of elasticity. The article describes the theoretical basis of this property, presents methods of measuring and continues earlier research.
Przejdź do artykułu

Abstrakt

Growing emission requirements are forcing the foundry industry to seek new, more environmentally friendly solutions. One of the solutions may be the technologies of preparing moulding and core sands using organic biodegradable materials as binders. However, not only environmental requirements grow but also those related to the technological properties of moulding sand. Advancing automation and mechanization of the foundry industry brings new challenges related to the moulding sands. Low elasticity may cause defects during assembly of cores or moulds by the manipulators. The paper presents the study of flexibility in the room temperature according to new method and resistance to thermal deformation of selfhardening moulding sands with furfuryl resin, containing biodegradable material PCL. The task of the new additive is to reduce the moulding sands harmfulness to the environment and increase its flexibility in the room temperature. The impact of the additive and the effect of the amount of binder on the properties of mentioned moulding sands were analysed. Studies have shown that the use of 5% of PCL does not change the nature of the thermal deformation curve, improves the bending strength of tested moulding mixtures and increases their flexibility at room temperature.
Przejdź do artykułu

Abstrakt

The constant growth of foundry modernization, mechanization and automation is followed with growing requirements for the quality and parameters of both moulding and core sands. Due to this changes it is necessary to widen the requirements for the parameters used for their quality evaluation by widening the testing of the moulding and core sands with the measurement of their resistance to mechanical deformation (further called elasticity). Following article covers measurements of this parameter in chosen moulding and core sands with different types of binders. It focuses on the differences in elasticity, bending strength and type of bond destruction (adhesive/cohesive) between different mixtures, and its connection to the applied bonding agent. Moulding and cores sands on which the most focus is placed on are primarily the self-hardening moulding sands with organic and inorganic binders, belonging to the group of universal applications (used as both moulding and core sands) and mixtures used in cold-box technology.
Przejdź do artykułu

Abstrakt

The paper presents the impact of biodegradable material - polycaprolactone (PCL) on selected properties of moulding sands. A self-hardening moulding sands with phenol-furfuryl resin, which is widely used in foundry practice, and an environmentally friendly self-hardening moulding sand with hydrated sodium silicate where chosen for testing. The purpose of the new additive in the case of synthetic resin moulding sands is to reduce their harmfulness to the environment and to increase their “elasticity” at ambient temperature. In the case of moulding sands with environmentally friendly hydrated sodium silicate binder, the task of the new additive is to increase the elasticity of the tested samples while preserving their ecological character. Studies have shown that the use of 5% PCL in moulding sand increases their flexibility at ambient temperature, both with organic and inorganic binders. The influence of the new additive on the deformation of the moulding sands at elevated temperatures has also been demonstrated.
Przejdź do artykułu

Abstrakt

The article shows the influence of environment requirements on changes in different foundry moulding sands technologies such as cold box, self-hardening moulding sands and green sands. The aim of the article is to show the possibility of using the biodegradable materials as binders (or parts of binders’ compositions) for foundry moulding and core sands. The authors concentrated on the possibility of preparing new binders consisting of typical synthetic resins - commonly used in foundry practice - and biodegradable materials. According to own research it is presumed that using biodegradable materials as a part of new binders’ compositions may cause not only lower toxicity and better ability to reclaim, but may also accelerate the biodegradation rate of used binders. What’s more, using some kinds of biodegradable materials may improve flexibility of moulding sands with polymeric binder. The conducted research was introductory and took into account bending strength and thermal properties of furan moulding sands with biodegradable material (PCL). The research proved that new biodegradable additive did not decrease the tested properties.
Przejdź do artykułu

Abstrakt

Modern techniques of castings production, including moulding sands production, require a strict technological regime and high quality materials. In the case of self-hardening moulding sands with synthetic binders those requirements apply mainly to sand, which adds to more than 98% of the whole moulding sand mixture. The factors that affect the quality of the moulding sands are both chemical (SiO2 , Fe2O3 and carbonates content) and physical. Among these factors somewhat less attention is paid to the granulometric composition of the sands. As a part of this study, the effect of sand quality on bending strength Rgu and thermal deformation of self-hardening moulding sands with furfural and alkyd resin was assessed. Moulding sands with furfural resin are known [1] to be the most susceptible to the sand quality. A negative effect on its properties has, among others, high content of clay binder and so-called subgrains (fraction smaller than 0,1mm), which can lead to neutralization of acidic hardeners (in the case of moulding sands with furfuryl resin) and also increase the specific surface, what forces greater amount of binding agents. The research used 5 different quartz sands originating from different sources and characterized with different grain composition and different clay binder content.
Przejdź do artykułu

Abstrakt

We used the Dpph method to assess in vitro the antiradical activity of extracts from the roots, leaves and fruits of six Rumex L. (dock) species. Data from preliminary screening indicated that all the tested extracts showed antioxidant properties. The degree of antiradical activity depended upon the plant part. Fruit extracts from R. hydrolapathum Huds., R. obtusifolius L. and R. confertus Willd. showed stronger antiradical properties than the other tested material. We also determined tannin content levels in the extracts and their correlation with antioxidant activity.
Przejdź do artykułu

Abstrakt

The necessity of obtaining high quality castings forces both researchers and producers to undertake research in the field of moulding sands. The key is to obtain moulding and core sands which will ensure relevant technological parameters along with high environmental standards. The most important group in this research constitutes of moulding sands with hydrated sodium silicate. The aim of the article is to propose optimized parameters of hardening process of moulding sands with hydrated sodium silicate prepared in warm-box technology. This work focuses on mechanical and thermal deformation of moulding sands with hydrated sodium silicate and inorganic additives prepared in warm-box technology. Tested moulding sands were hardened in the temperature of 140oC for different time periods. Bending strength, thermal deformation and thermal degradation was tested. Chosen parameters were tested immediately after hardening and after 1h of cooling. Conducted research proved that it is possible to eliminate inorganic additives from moulding sands compositions. Moulding sands without additives have good enough strength properties and their economic and ecological character is improved.
Przejdź do artykułu

Abstrakt

The essence of ablation casting technology consists in pouring castings in single-use moulds made from the mixture of sand and a watersoluble binder. After pouring the mould with liquid metal, while the casting is still solidifying, the mould destruction (washing out, erosion) takes place using a stream of cooling medium, which in this case is water. This paper focuses on the selection of moulding sands with hydrated sodium silicate for moulds used in the ablation casting. The research is based on the use of Cordis binder produced by the Hüttenes-Albertus Company. It is a new-generation inorganic binder based on hydrated sodium silicate. Its hardening takes place under the effect of high temperature. As part of the research, loose moulding mixtures based on the silica sand with different content of Cordis binder and special Anorgit additive were prepared. The reference material was sand mixture without the additive. The review of literature data and the results of own studies have shown that moulding sand with hydrated sodium silicate hardened by dehydration is characterized by sufficient strength properties to be used in the ablation casting process. Additionally, at the Foundry Research Institute in Krakow, preliminary semi-industrial tests were carried out on the use of Cordis sand technology in the manufacture of moulds for ablation casting. The possibility to use these sand mixtures has been confirmed in terms of both casting surface quality and sand reclamation.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji