Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

The results of experimental investigations into foaming process of poly(ε-caprolactone) using supercritical CO2 are presented. The objective of the study was to explore the aspects of fabrication of biodegradable and biocompatible scaffolds that can be applied as a temporary three-dimensional extracellular matrix analog for cells to grow into a new tissue. The influence of foaming process parameters, which have been proven previously to affect significantly scaffold bioactivity, such as pressure (8-18 MPa), temperature (323-373 K) and time of saturation (1-6 h) on microstructure and mechanical properties of produced polymer porous structures is presented. The morphology and mechanical properties of considered materials were analyzed using a scanning electron microscope (SEM), x-ray microtomography (μ-CT) and a static compression test. A precise control over porosity and morphology of obtained polymer porous structures by adjusting the foaming process parameters has been proved. The obtained poly(ε-caprolactone) solid foams prepared using scCO2 have demonstrated sufficient mechanical strength to be applied as scaffolds in tissue engineering.
Go to article

Abstract

Biocomposite foam scaffolds of poly(ε-caprolactone) (PCL) with different porogenes were produced with batch foaming technique using supercritical carbon dioxide (scCO2) as a blowing agent. In performed experiments composites were prepared from graphene-oxide (nGO), nano-hydroxyapatite (nHA) and nano-cellulose (nC), with various concentrations. The objective of the study was to explore the effects of porogen concentration and foaming process parameters on the morphology and mechanical properties of three-dimensional porous structures that can be used as temporary scaffolds in tissue engineering. The structures were manufactured using scCO2 as a blowing agent, at two various foaming pressures (9 MPa and 18 MPa), at three different temperatures (323 K, 343 K and 373 K) for different saturation times (0.5 h, 1 h and 4 h). In order to examine the utility of porogenes, a number of tests, such as static compression tests, thermal analysis and scanning electron microscopy, have been performed. Analysis of experimental results showed that the investigated materials demonstrated high mechanical strength and a wide range of pore sizes. The obtained results suggest that PCL porous structures are useful as biodegradable and biocompatible scaffolds for tissue engineering.
Go to article

Abstract

In this study, the process of membrane cleaning by supercritical fluid extraction was investigated. Polypropylene microfiltration membranes, contaminated with oils, were treated in a batch process with a supercritical fluid (SCF). As extractant, pure supercritical carbon dioxide or supercritical carbon dioxide with admixtures of methanol, ethanol and isopropanol were used. Single-stage and multi-stage extraction was carried out and process efficiency was determined. The obtained results showed that addition of organic solvents significantly enhances the cleaning performance, which increases with increase of organic solvent concentration and decreases with increasing temperature. All three solvents showed a comparable effect of efficiency enhancement. The results confirmed that supercritical fluid extraction can be applied for polypropylene membrane cleaning.
Go to article

This page uses 'cookies'. Learn more