Search results

Filters

  • Journals

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

This paper presents an analytical approach for solving the weighting matrices selection problem of a linear quadratic regulator (LQR) for the trajectory tracking application of a magnetic levitation system. One of the challenging problems in the design of LQR for tracking applications is the choice of Q and R matrices. Conventionally, the weights of a LQR controller are chosen based on a trial and error approach to determine the optimum state feedback controller gains. However, it is often time consuming and tedious to tune the controller gains via a trial and error method. To address this problem, by utilizing the relation between the algebraic Riccati equation (ARE) and the Lagrangian optimization principle, an analytical methodology for selecting the elements of Q and R matrices has been formulated. The novelty of the methodology is the emphasis on the synthesis of time domain design specifications for the formulation of the cost function of LQR, which directly translates the system requirement into a cost function so that the optimal performance can be obtained via a systematic approach. The efficacy of the proposed methodology is tested on the benchmark Quanser magnetic levitation system and a detailed simulation and experimental results are presented. Experimental results prove that the proposed methodology not only provides a systematic way of selecting the weighting matrices but also significantly improves the tracking performance of the system.
Go to article

Abstract

This paper presents an adaptive particle swarm optimization (APSO) based LQR controller for optimal tuning of state feedback controller gains for a class of under actuated system (Inverted pendulum). Normally, the weights of LQR controller are chosen based on trial and error approach to obtain the optimum controller gains, but it is often cumbersome and tedious to tune the controller gains via trial and error method. To address this problem, an intelligent approach employing adaptive PSO (APSO) for optimum tuning of LQR is proposed. In this approach, an adaptive inertia weight factor (AIWF), which adjusts the inertia weight according to the success rate of the particles, is employed to not only speed up the search process but also to increase the accuracy of the algorithm towards obtaining the optimum controller gain. The performance of the proposed approach is tested on a bench mark inverted pendulum system, and the experimental results of APSO are compared with that of the conventional PSO and GA. Experimental results prove that the proposed algorithm remarkably improves the convergence speed and precision of PSO in obtaining the robust trajectory tracking of inverted pendulum.
Go to article

This page uses 'cookies'. Learn more