Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

Ultrasonic processing in the cavitation mode is used to produce the composite materials based on the metal matrix and reinforcing particles of micro- and nano-sizes. In such a case, the deagglomeration of aggregates and the uniform distribution of particles are the expected effects. Although the particles can not only fragment in the acoustic field, they also can coagulate, coarsen and precipitate. In this paper, a theoretical study of processes of deagglomeration and coagulation of particles in the liquid metal under ultrasonic treatment is made. The influence of various parameters of ultrasound and dispersion medium on the dynamics of particles in the acoustic field is considered on the basis of the proposed mathematical model. The criterion of leading process (coagulation or deagglomeration) has been proposed. The calculated results are compared with the experimental ones known from the scientific literature.
Go to article

Abstract

Acoustic radiation sources are successfully applied to cleaning rooms from dust of fairly large particle sizes (ten micrometers and larger). The sedimentation of fine aerosols (particle diameter of 1-10 microns) is a more complicated challenge. The paper is devoted to the substantiation of the acoustic sedimentation method for such aerosols. On the basis of the mathematical model analysis for aerosol sedimentation by the acoustic field the mechanisms of this process have been determined and include the particle coagulation acceleration and radiation pressure effect. The experimental results of the acoustic sedimentation of a model aerosol (NaCl) are shown. The calculation results according to the mathematical model for coagulation and sedimentation, on the basis of the Smolukhovsky’s equation taking into account various mechanisms of aerosol sedimentation by sound depending on the particle sizes and sound intensity, are given. The necessity to use intensive sources of high-frequency sound has been confirmed, suggesting that these sources must be located above dust clouds.
Go to article

This page uses 'cookies'. Learn more