Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 56
items per page: 25 50 75
Sort by:

Abstract

The presence of lipopolysaccharide (LPS) in blood induces an inflammatory response which leads to multiple organ dysfunction and numerous metabolic disorders. Uncontrolled, improper or late intervention may lead to tissue hypoxia, anaerobic glycolysis and a disturbance in the acid -base balance. The effects of LPS-induced toxemia on biological and immunological markers were well studied. However, parameters such as base excess, ions, and acid-base balance were not fully investigated. Therefore, the objective of this study was to examine these blood parameters collectively in LPS-induced inflammatory toxemia in rat’s model. After induction of toxemia by injecting LPS at a rate of 5 mg/kg body weight intravenously, blood was collected from the tail vein of twenty rats and immediately analyzed. After 24 hours, the animals were sacrificed and the blood was collected from the caudal vena cava. The results revealed that the levels of pH, bicarbonate, partial pressure of oxygen, oxygen saturation, Alveolar oxygen, hemoglobin, hematocrit, magnesium (Mg2+), and calcium (Ca2+) were significantly decreased. On the other side, the levels of Base excess blood, Base excess extracellular fluid, partial pressure of carbon dioxide, lactate, Ca2+/Mg2+, potassium, and chloride were significantly increased compared to those found pre toxemia induction. However, sodium level showed no significant change. In conclusion, Acute LPS-toxemia model disturbs acid-base balance, blood gases, and ions. These parameters can be used to monitor human and animal toxemic inflammatory response induced by bacterial LPS conditions to assist in the management of the diagnosed cases.
Go to article

Abstract

A cold roll-bonding process was applied to fabricate an AA1050/AA6061/AA1050 multi-layer sheet. Three Al sheets in which an AA6061 sheet is inserted inside two AA1050 sheets of 2 mm thickness, 40 mm width and 300 mm length were stacked up after surface treatment, and the material was then reduced to a thickness of 1.0 mm by multi-pass cold rolling. The AA1050/AA6061/ AA1050 laminate complex sheet fabricated by roll bonding was then hardened by a natural aging (T4) and an artificial aging (T6) treatments. The microstructures of the as-roll bonded and the age-hardened Al complex sheets were revealed by optical microscope and electron back scatter diffraction analysis, and the mechanical properties were investigated by tensile and hardness testing. The strength of the as-roll bonded complex sheet was found to increase by 2.6 times, compared to that value of the starting material. Both AA1050 and AA6061 showed a typical recrystallization structure in which the grains were equiaxed after heat treatment. However, the grain size was smaller in AA6061 than in AA1050.
Go to article

Abstract

Macroporous silica fibers having spherical cavities were fabricated by electrospinning using the spinning solution prepared from the mixed dispersion of tetraethylorthosilicate (TEOS) and polystyrene nanospheres as precursor and sacrificial templates, respectively, by injection through metallic nozzle. By applying electric field, the electro-spun fibers obtained by evaporation-driven self-assembly were collected on flat substrate or rotating drum, followed by the removal of the templates by calcination. The sound absorption coefficient of the porous fibers was measured by impedance tube, and the measured value was larger than 0.9 at high frequency region of incident waves. The surface of the resulting fibers was modified using fluorine-containing silane coupling agent to produce superhydrophobic fibrous materials to prevent the infiltration of humidity.
Go to article

Abstract

A nanocrystalline Ti alloy powder was fabricated using cryomilling. The grain size and lattice strain evolution during cryomilling were quantitatively analyzed using X-ray diffraction (XRD) based on the Scherrer equation, Williamson-Hall (W-H) plotting method, and size-strain (S-S) method assuming uniform deformation. Other physical parameters including stress and strain have been calculated. The average crystallite size and the lattice strain evaluated from XRD analysis are in good agreement with the result of transmission electron microscopy (TEM).
Go to article

This page uses 'cookies'. Learn more