Search results

Filters

  • Journals
  • Authors
  • Contributor
  • Keywords
  • Date
  • Type

Search results

Number of results: 37
items per page: 25 50 75
Sort by:

Abstract

The paper presents a detailed analysis of the material damaging process due to lowcycle fatigue and subsequent crack growth under thermal shocks and high pressure. Finite Element Method (FEM) model of a high pressure (HP) by-pass valve body and a steam turbine rotor shaft (used in a coal power plant) is presented. The main damaging factor in both cases is fatigue due to cycles of rapid temperature changes. The crack initiation, occurring at a relatively low number of load cycles, depends on alternating or alternating-incremental changes in plastic strains. The crack propagation is determined by the classic fracture mechanics, based on finite element models and the most dangerous case of brittle fracture. This example shows the adaptation of the structure to work in the ultimate conditions of high pressure, thermal shocks and cracking.
Go to article

Abstract

Natalia Marek-Trzonkowska and Piotr Trzonkowski of the Medical University of Gdańsk talk about trust, coordination, and creative conflicts – in the first of a series of interviews with scientists who are partners both at work and in life.
Go to article

Abstract

The paper presents a new electromechanical amplifying device i.e., an electromechanical biological transistor. This device is located in the outer hair cell (OHC), and constitutes a part of the Cochlear amplifier. The physical principle of operation of this new amplifying device is based on the phenomenon of forward mechanoelectrical transduction that occurs in the OHC's stereocilia. Operation of this device is similar to that of classical electronic Field Effect Transistor (FET). In the considered electromechanical transistor the input signal is a mechanical (acoustic) signal. Whereas the output signal is an electric signal. It has been shown that the proposed electromechanical transistor can play a role of the active electromechanical controlled element that has the ability to amplify the power of input AC signals. The power required to amplify the input signals is extracted from a battery of DC voltage. In the considered electromechanical transistor, that operates in the amplifier circuit, mechanical input signal controls the flow of electric energy in the output circuit, from a battery of DC voltage to the load resistance. Small signal equivalent electrical circuit of the electromechanical transistor is developed. Numerical values of the electrical parameters of the equivalent circuit were evaluated. The range, which covers the levels of input signals (force and velocity) and output signals (voltage, current) was determined. The obtained data are consistent with physiological data. Exemplary numerical values of currents, voltages, forces, vibrational velocities and power gain (for the assumed input power levels below 1 picowatt (10-12 W)), were given. This new electromechanical active device (transistor) can be responsible for power amplification in the cochlear amplifier in the inner ear.
Go to article

Abstract

In this paper a sample rate conversion algorithm which allows for continuously changing resampling ratio has been presented. The proposed implementation is based on a variable fractional delay filter which is implemented by means of a Farrow structure. Coefficients of this structure are computed on the basis of fractional delay filters which are designed using the offset window method. The proposed approach allows us to freely change the instantaneous resampling ratio during processing. Using such an algorithm we can simulate recording of audio on magnetic tape with nonuniform velocity as well as remove such distortions. We have demonstrated capabilities of the proposed approach based on the example of speech signal processing with a resampling ratio which was computed on the basis of estimated fundamental frequency of voiced speech segments.
Go to article

Abstract

Since 1978 the retreat of Ecology Glacier in the vicinity of Henryk Arctowski Station has opened new ice-free areas for colonization by terrestrial organisms initiated by pioneer microbes. Samples were collected from the soil surface, at 0, 5 and 20 cm below surface close to glacier front, then stored at below -20°C . Total bacterial count (TC), estimated by epifluorescence microscopy, reached high values, of 1010 g-1 dry wt. Healthy looking bacterial cells of mean volume 0.0209 µm3 at 0 cm to 0.0292 µm3 at 20 cm made up from 7% at 0 cm , to 30% at 20 cm of total bacterial population. The number of colony forming units (CFU) accounted for only 0.02% of TC. Taxonomically they belonged to the a, b, g subdivisions of the proteobacteria and to the Cytophaga-Flavobacterium-Bacteroides (CFB) group. Morphophysiologically CFU bacteria were diverse, from Gram variable short coccal forms to very long rods or filaments. Randomly selected CFU colonies were characterized by low sugar assimilation and high esterase/lipase activity. Spore forming bacteria – absent from 0 and 5 cm , formed a small fraction of 175 cells g-1 dry wt at the 20 cm depth. Filamentous fungi were relatively abundant and represented mainly by oligotrophs.
Go to article

Abstract

During the Polish Antarctic Geodynamic Expeditions, 1979-91, a wide geophysical and geological programme was performed in the transition zone between the Drake and South Shetland microplates and the Antarctic Plate, in West Antarctica. In the Bransfield Strait area, and along passive continental margin of the Antarctic Peninsula, 20 deep seismic sounding profiles were made. The interpretation yielded two - dimensional models of the crust and lithosphere down to 80 km depth. In the coastal area between the Palmer Archipelago and the Adelaide Island, the Earth's crust has a typical continental structure. Its thickness varies from 36 to 42 km in the coastal area, decreasing to about 25-28 km toward Pacific Ocean. In the surrounding of Bransfield Strait, the Moho boundary depth ranges from 10 km beneath the South Shetland Trench to 40 km beneath Antarctic Peninsula. The crustal structure beneath the Bransfield Strait trough is highly anomalous. Presence of a high-velocity body, with longitudinal seismic wave velocities Vp > 7,0 km/s, was detected there in the 6-32 km depth range. This inhomogeneity was interpreted as an intrusion, coinciding with the Deception-Bridgeman volcanic line. In the transition zone from the Drake Passage to the South Shetland Islands, a seismic boundary in the lower lithosphere occurs at a depth ranging from 35 to 80 km. The dip of both the Moho and this boundary is approximately 25° towards the southeast, indicating the direction of subduction of the Drake Plate lithosphere under the Antarctic Plate. Basing on the results of four Polish Geodynamic Expeditions, the map of crustal thickness in West Antarctica is presented.
Go to article

Abstract

During the Polish Antarctic Geodynamical Expeditions in 1979-91, deep seismic sounding measurements were performed in the transition zone between the Drake and South Shetland Microplates and the Antarctic Plate in West Antarctica. For the Bransfield Strait area, the seismic records of five land stations in South Shetland Islands and two stations at the Antarctic Peninsula were used. The interpretation yielded two—dimensional models of the crust and lithosphere down to 80 km depth. In the uppermost crust, the unconsolidated and poorly consolidated young sediments with velocities of 1.9 — 2.9 km/s cover the layers 4.0—4.2 and 5.6—5.9 km/s. The crustal structure beneath the trough of Bransfield Strait is highly anomalous. The presence of a high velocity body, with longitudinal seismic wave velocities vp > 7.0 km/s, was detected in the 6 — 30 km depth range. This inhomogeneity was interpreted as an intrusion, coinciding with the Deception—Bridgeman volcanic line. For the uppermost crust, a qualitative comparison was made between the results from the reflection profiles (GUN) and deep seismic sounding profiles (DSS). In the study area, the Moho boundary depth ranges from 10 km beneath the South Shetland Trench to 40 km under the Antarctic Peninsula. In the transition zone from the Drake Passage to the South Shetland Islands, a seismic boundary in the lower lithosphere occurs at a depth ranging from 35 to 80 km. The dip of both the Moho and this boundary is approximately 25°, and indicates the direction of subduction of the Drake Plate lithosphere under the Antarctic Plate. The results obtained were compared with earlier results of seismic, gravity and magnetic surveys in West Antarctica. A scheme of geotectonic division and a geodynamical model of the zone of subduction of the Drake Plate under the Antarctic Plate is compared with subduction zones in other areas of the circum-Pacific belt.
Go to article

Abstract

The paper presents a concept of a control system for a high-frequency three-phase PWM grid-tied converter (3x400 V / 50 Hz) that performs functions of a 10-kW DC power supply with voltage range of 600÷800 V and of a reactive power compensator. Simulation tests (in PLECS) allowed proper selection of semiconductor switches between fast IGBTs and silicon carbide MOSFETs. As the main criterion minimum amount of power losses in semiconductor devices was adopted. Switching frequency of at least 40 kHz was used with the aim of minimizing size of passive filters (chokes, capacitors) both on the AC side and on the DC side. Simulation results have been confirmed in experimental studies of the PWM converter, the power factor of which (inductive and capacitive) could be regulated in range from 0.7 to 1.0 with THDi of line currents below 5% and energy efficiency of approximately 98.5%. The control system was implemented in Texas Instruments TMS320F28377S microcontroller.
Go to article
Keywords cukrzyca glukoza

Abstract

The Bulletin of the Polish Academy of Sciences: Technical Sciences (Bull.Pol. Ac.: Tech.) is published bimonthly by the Division IV Engineering Sciences of the Polish Academy of Sciences, since the beginning of the existence of the PAS in 1952. The journal is peer‐reviewed and is published both in printed and electronic form. It is established for the publication of original high quality papers from multidisciplinary Engineering sciences with the following topics preferred: Artificial and Computational Intelligence, Biomedical Engineering and Biotechnology, Civil Engineering, Control, Informatics and Robotics, Electronics, Telecommunication and Optoelectronics, Mechanical and Aeronautical Engineering, Thermodynamics, Material Science and Nanotechnology, Power Systems and Power Electronics. Journal Metrics: JCR Impact Factor 2018: 1.361, 5 Year Impact Factor: 1.323, SCImago Journal Rank (SJR) 2017: 0.319, Source Normalized Impact per Paper (SNIP) 2017: 1.005, CiteScore 2017: 1.27, The Polish Ministry of Science and Higher Education 2017: 25 points. Abbreviations/Acronym: Journal citation: Bull. Pol. Ac.: Tech., ISO: Bull. Pol. Acad. Sci.-Tech. Sci., JCR Abbrev: B POL ACAD SCI-TECH Acronym in the Editorial System: BPASTS.
Go to article

Abstract

The purpose of this study was to determine the spatial structure of vegetation on the repository of the mine “Fryderyk” in Tarnowskie Góry. Tested area was located in the Upper Silesian Industrial Region (a large industrial region in Poland). It was a unique refuge habitat – Natura2000; PLH240008. The main aspect of this elaboration was to investigate the possible use of geotechniques and generally available geodata for mapping LULC changes and determining the spatial structure of vegetation. The presented study focuses on the analysis of a spatial structure of vegetation in the research area. This exploration was based on aerial images and orthophotomaps from 1947, 1998, 2003, 2009, 2011 and airborne laser scanning data (2011, ISOK project). Forest succession changes which occurred between 1947 and 2011 were analysed. The selected features of vegetation overgrowing spoil heap “Fryderyk” was determined. The results demonstrated a gradual succession of greenery on soil heap. In 1947, 84% of this area was covered by low vegetation. Tree expansion was proceeding in the westerly and northwest direction. In 2011 this canopy layer covered almost 50% of the research area. Parameters such as height of vegetation, crowns length and cover density were calculated by an airborne laser scanning data. These analyses indicated significant diversity in vertical and horizontal structures of vegetation. The study presents some capacities to use airborne laser scanning for an impartial evaluation of the structure of vegetation.
Go to article

Abstract

Suspended matter, phytoplankton and light attenuation were investigated in various North East Greenland, Svalbard and Siberian river mouths in 1992-1994. The amount of mineral suspensions well correlated with freshwater discharge in the case of tidal glacier bays, while such correlation in Siberian rivers and pack ice meltwater was not found. Freshwater phytoplankton species were found in Siberian estuaries only and in two other ecosystems marine and ice phytoplankton species prevailed. The light attenuation connected with freshwater discharge seems to be a key factor limiting primary production in coastal Actic waters in the summer. The amount of glacial suspensions well correlated with the salinity drop in the case of Svalbard, while Siberian river estuaries produced very turbid waters with the suspension loads not correlated to freshwater or depth.
Go to article

Abstract

An emerging ultrasonic technology aims to control high-pressure industrial processes that use liquids at pressures up to 800 MPa. To control these processes it is necessary to know precisely physicochemical properties of the processed liquid (e.g., Camelina sativa oil) in the high-pressure range. In recent years, Camelina sativa oil gained a significant interest in food and biofuel industries. Unfortunately, only a very few data characterizing the high-pressure behavior of Camelina sativa oil is available. The aim of this paper is to investigate high pressure physicochemical properties of liquids on the example of Camelina sativa oil, using efficient ultrasonic techniques, i.e., speed of sound measurements supported by parallel measurements of density. It is worth noting that conventional low-pressure methods of measuring physicochemical properties of liquids fail at high pressures. The time of flight (TOF) between the two selected ultrasonic impulses was evaluated with a cross-correlation method. TOF measurements enabled for determination of the speed of sound with very high precision (of the order of picoseconds). Ultrasonic velocity and density measurements were performed for pressures 0.1–660 MPa, and temperatures 3–30XC. Isotherms of acoustic impedance Za, surface tension #27; and thermal conductivity k were subsequently evaluated. These physicochemical parameters of Camelina sativa oil are mainly influenced by changes in the pressure p, i.e., they increase about two times when the pressure increases from atmospheric pressure (0.1 MPa) to 660 MPa at 30XC. The results obtained in this study are novel and can be applied in food, and chemical industries.
Go to article

Abstract

The objective of this research is to determine the impact of waves on the segregation of sediment within the area of its supply in the context of meteorological conditions. The research was conducted on a 4 km section of the shore of Calypsostranda (Bellsund, West Spitsbergen), shaped by waves such as swell, wind waves, and tides. Particular attention was paid to the diversity and variability of the surface texture within the intertidal zone. Meteorological measurements, recording of wave climate, as well as analysis of the grain-size distribution of the beach sediments were performed. Nearshore bathymetry, longshore drifts, episodic sediment delivery from land, as well as resistance of the shore to coastal erosion and direction of transport of sediments in the shore zone are important factors controlling shore development. Data show that wind waves contribute to erosion and discharge of material from the nearshore and intertidal zone. The research also shows that oceanic swell, altered by diffraction, reaching the shore of Calypsostranda contributes to better sorting of sediment deposited on the shore through washing it out from among gravels, and longshore transport of its finest fraction. The grain size distribution of shore sediments is significantly changed already during one tidal cycle. The degree of this modification depends not only on wave height and period but on the direction of wave impact. The shore of Calypsostranda can be regarded as transitional between high and low energy coasts.
Go to article

Abstract

This paper presents a theoretical study of the propagation behaviour of surface Love waves in nonhomogeneous functionally graded elastic materials, which is a vital problem in acoustics. The elastic properties (shear modulus) of a semi-infinite elastic half-space vary monotonically with the depth (distance from the surface of the material). Two Love wave waveguide structures are analyzed: 1) a nonhomogeneous elastic surface layer deposited on a homogeneous elastic substrate, and 2) a semi-infinite nonhomogeneous elastic half-space. The Direct Sturm-Liouville Problem that describes the propagation of Love waves in nonhomogeneous elastic functionally graded materials is formulated and solved 1) analytically in the case of the step profile, exponential profile and 1cosh2 type profile, and 2) numerically in the case of the power type profiles (i.e. linear and quadratic), by using two numerical methods: i.e. a) Finite Difference Method, and b) Haskell-Thompson Transfer Matrix Method. The dispersion curves of phase and group velocity of surface Love waves in inhomogeneous elastic graded materials are evaluated. The integral formula for the group velocity of Love waves in nonhomogeneous elastic graded materials has been established. The results obtained in this paper can give a deeper insight into the nature of Love waves propagation in elastic nonhomogeneous functionally graded materials.
Go to article

Abstract

The present paper is devoted to the discussion and review of the non-destructive testing methods mainly based on vibration and wave propagation. In the first part, the experimental methods of actuating and analyzing the signal (vibration) are discussed. The piezoelectric elements, fiber optic sensors and Laser Scanning Doppler Vibrometer (SLDV) method are described. Effective detecting of the flaws needs very accurate theoretical models. Thus, the numerical methods, e.g. finite element, spectral element method and numerical models of the flaws in isotropic and composite materials are presented. Moreover, the detection of the damage in structures, which are subjected to cyclic or static loads, is based on the analyzing of the change in natural frequency of the whole structure, the change of internal impedance of the material and the change in guided waves propagating through the investigated structure. All these cases are characterized in detail. At the end of this paper, several applications of the structural health monitoring systems in machine design and operation are presented.
Go to article

Abstract

The quarrying industry is changing the local landscape, forming deep open pits and spoil heaps in close proximity to them, especially lignite mines. The impact can include toxic soil material (low pH, heavy metals, oxidations etc.) which is the basis for further reclamation and afforestation. Forests that stand on spoil heaps have very different growth conditions because of the relief (slope, aspect, wind and rainfall shadows, supply of solar energy, etc.) and type of soil that is deposited. Airborne laser scanning (ALS) technology deliver point clouds (XYZ) and derivatives as raster height models (DTM, DSM, nDSM=CHM) which allow the reception of selected 2D and 3D forest parameters (e.g. height, base of the crown, cover, density, volume, biomass, etc). The automation of ALS point cloud processing and integrating the results into GIS helps forest managers to take appropriate decisions on silvicultural treatments in areas with failed plantations (toxic soil, droughts on south-facing slopes; landslides, etc.) or as regular maintenance. The ISOK country-wide project ongoing in Poland will soon deliver ALS point cloud data which can be successfully used for the monitoring and management of many thousands of hectares of destroyed post-industrial areas which according to the law, have to be afforested and transferred back to the State Forest.
Go to article

Abstract

Systems of road traffic parameters measurement play a key role in the process of road traffic control, its supervision as well as in gathering and processing information for statistical purposes. Expectations of users of such systems mainly concern automation and provision of measurement continuity, possibility of selection of the measured road traffic parameters and high accuracy along with reliability of obtained results. In order to meet the requirements set for such systems, at the Department of Instrumentation and Measurement of the AGH University of Science and Technology in Cracow a new prototype system of road traffic parameters measurement - Traffic-1 - has been constructed. The innovativeness of the solution is manifested in the structure of the system that can be modified by the user adequately to current measurement needs and in the used algorithms of signals processing. The work contains a brief description of the constructed system with particular focus on the used innovations that are the result of many years of research work of the designers.
Go to article

This page uses 'cookies'. Learn more