Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

In recent years, many scientific and industrial centres in the world developed virtual reality systems or laboratories. At present, among the most advanced virtual reality systems are CAVE-type (Cave Automatic Virtual Environment) installations. Such systems usually consist of four, five, or six projection screens arranged in the form of a closed or hemi-closed space. The basic task of such systems is to ensure the effect of user “immersion” in the surrounding environment. The effect of user “immersion” into virtual reality in such systems is largely dependent on optical properties of the system, especially on quality of projection of three-dimensional images. In this paper, techniques of projection of three-dimensional (3D) images in CAVE-type virtual reality systems are analysed. The requirements of these techniques for such virtual reality systems are outlined. Based on the results of measurements performed in a unique CAVE-type virtual reality laboratory equipped with two different 3D projection techniques, named Immersive 3D Visualization Lab (I3DVL), that was recently opened at the Gdańsk University of Technology, the stereoscopic parameters and colour gamut of Infitec and Active Stereo stereoscopic projection techniques are examined and discussed. The obtained results enable to estimate the projection system quality for application in CAVE-type virtual reality installations.
Go to article

Abstract

Rapid development of computing and visualisation systems has resulted in an unprecedented capability to display, in real time, realistic computer-generated worlds. Advanced techniques, including three-dimensional (3D) projection, supplemented by multi-channel surround sound, create immersive environments whose applications range from entertainment to military to scientific. One of the most advanced virtual reality systems are CAVE-type systems, in which the user is surrounded by projection screens. Knowledge of the screen material scattering properties, which depend on projection geometry and wavelength, is mandatory for proper design of these systems. In this paper this problem is addressed by introducing a scattering distribution function, creating a dedicated measurement setup and investigating the properties of selected materials used for rear projection screens. Based on the obtained results it can be concluded that the choice of the screen material has substantial impact on the performance of the system
Go to article

Abstract

In this paper, we present a fibre-optic sensor for simultaneous measurement of refractive index and thickness of liquid layers.We designed an experimental low-coherence setup with two broadband light sources and an extrinsic fibre-optic Fabry–Pérot interferometer acting as the sensing head.We examined how the refractive index of a liquid film and its thickness affect spectrum at the output of a fibre-optic interferometer. We performed a series of experiments using two light sources and only one sensing head. The spectra were collected in ranges of 1220#4;1340 nm and 1500#4;1640 nm. The obtained results show that using two spectra recorded simultaneously for two wavelength ranges enables to determine thickness in a range of 50#4;500 #22;m, and refractive index of a liquid film in a range of 1:00#4;1:41 RIU using only one sensing head.
Go to article

This page uses 'cookies'. Learn more