Search results

Filters

  • Journals
  • Date

Search results

Number of results: 5
items per page: 25 50 75
Sort by:

Abstract

In this review, research carried out on sorption-enhanced steam methane reforming (SESMR) process is presented and discussed. The reactor types employed to carry out this process, fixed packed bed and fluidized bed reactors, are characterized as well as their main operating conditions indicated. Also the concepts developed and investigations performed by the main research groups involved in the subject are summarized. Next the catalysts and CO2 sorbents developed to carry out SE-SMR are characterized and the relationships describing the reaction and sorption kinetics are collected. A general approach to model the process is presented as well as results obtained for a calculation example, which demonstrate the main properties of SE-SMR.
Go to article

Abstract

Activation of tyre pyrolysis char (TPC) can significantly increase its market value. To date, it has been frequently carried out in different reactors. In this work, thermogravimetric analysis was used instead. The performance of activated pyrolysis chars was tested by adsorption of acetone vapour and comparison of the equilibrium adsorption capacities for all samples. The highest equilibrium adsorption capacity was observed for the carbon burn-off of #24; 60%. In addition, the equilibrium adsorption capacity of activated TPC decreases by about 10% after eleven adsorption/desorption cycles. Moreover, activation changed the porous structure of pyrolysis chars from mesoporous to micro-mesoporous.
Go to article

Abstract

This paper presents a systematic thermogravimetric (TG) study on the kinetics of end-of-life tyre (ELT) pyrolysis. In the experimental part of this work, TG results are compared for tyre samples of different mass and size. This shows that the conduction resistance in the milligram scale (up to ~100 mg) tyre sample can be neglected. A comparison of experimental results demonstrates that the characteristic maxima on the DTG curve (the first derivative of TG signal) shift towards higher temperatures for higher heating rates. This phenomenon is explained to have kinetic origin and it is not caused by the internal heat transfer resistance. In the modelling part of this work, the kinetic parameters of the Three-Component Simulation Model (TCSM) are calculated and compared to the literature values. Testing of the kinetic model is carried out using experiments with a varying heating rate. This shows the limitation of the simplified kinetic approach and the appropriate selection method of the kinetic parameters.
Go to article

This page uses 'cookies'. Learn more