Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 13
items per page: 25 50 75
Sort by:

Abstract

The article contains basic information associated with the impact of the FSW process parameters on the forming of a weld while friction welding of aluminium casting alloys. Research was conducted using specially made samples containing a rod of casting alloy mounted in the wrought alloy in the selected area of FSW tool acting. Research has thrown light on the process of joining materials of significantly dissimilar physical properties, such as casting alloys and wrought alloys. Metallographic testing of a weld area has revealed the big impact of welding conditions, especially tool rotational speed, on the degree of metal stirring, grain refinement and shape factor of a weld. As the result of research it has been stated that at the high tool rotational speed, the metals stirring in a weld is significantly greater than in case of welding at low rotational speeds, however this fails to influence the strength of a weld. Plastic strain occurring while welding causes very high refinement of particles in the tested area and changing of their shape towards particles being more equiaxial. In the properly selected welding conditions it is possible to obtain joints of correct and repeatable structure, however in the case of the accumulation of cavities in the casting alloy the FSW process not always eliminates them.
Go to article

Abstract

Personality, demographics and art experience proved to play an important role in reactions to visual art. Nevertheless, research attempts that take into account all those factors when determining predictors of aesthetic responses to different artistic styles are quite rare. The study presented here investigates predictors of aesthetic experience across figurative, abstract and contemporary paintings in individuals with varying expertise. Students enrolled in Sport, Humanities and the Arts programmes (N = 181) declared their art exposure and filled out personality measures (Big Five, alexithymia, need for closure). Next participants evaluated three paintings using a tool constructed by the authors to track various dimensions of aesthetic reactions (i.e. negative/positive affective responses, self-references, explicit knowledge and perceived mastery of the artwork). Reactions to figurative painting depended mostly on formal knowledge about arts, not personality traits. Aesthetic perception of abstract art rely not only on art exposure, but also on some individual characteristics (openness to experience, tolerance of ambiguity and ability to identify one’s own emotions and track their source). Reception of contemporary art was predicted mostly by art exposure variables and in the case of negative emotionality by ability to identify one’s own emotions and track their source. Both formal art education and art experience were stronger predictors of aesthetic responses than personality traits, for all art styles and dimensions of aesthetic experience. Personality predictors were significant mostly for abstract art. Personal interest in the arts seems to be as good predictor of aesthetic reactions as formal expertise.
Go to article

Abstract

In this paper were conducted virtual tests to assess the impact of geometry changes on the response of metallic hexagonal honeycomb structures to applied loadings. The lateral compressive stress state was taken into consideration. The material properties used to build numerical models were assessed in laboratory tests of aluminium alloy 7075. The modelling at meso-scale level allow to comprehensive study of honeycomb internal structure. The changes of honeycomb geometry elements such as: fillets radius of the cell edges in the vicinity of hexagonal vertexes, wall thickness were considered. The computations were conducted by using finite element method with application of the ABAQUS finite element method environment. Elaborated numerical models allowed to demonstrate sensitivity of honeycomb structures damage process response to geometry element changes. They are a proper tools to perform optimization of the honeycomb structures. They will be also helpful in designing process of modern constructions build up of the considered composite constituents in various branches of industry. Moreover, the obtained results can be used as a guide for engineers. Conducted virtual tests lead to conclusion that simplification of the models of internal honeycomb structure which have become commonplace among both engineers and scientist can lead to inaccurate results.
Go to article

Abstract

The results of the application and evaluation of the r.sun model for calculation of the total solar radiation for the Wedel Jarlsberg Land (SW Spitsbergen) are presented. Linke Turbidity Factor (LTF), which is the obligatory parameter for direct and diffused radiation calculations with the r.sun model, is derived here with the empirical formula and meteoro− logical measurements. Few different approaches for calculation of LTF are presented and tested. The r.sun model results, calculated with these various LTF, are evaluated through comparison with total solar radiation measurements gathered at Polish Polar Station. The r.sun model is found to be in good agreement with the measurements for clear sky condi− tions, with the explained variance (R2) close to 0.9. Overall, the model slightly underesti− mates the measured total radiation. Reasonable results were calculated for the cloudiness condition up to 2 octas, and for these r.sun model can be considered as a reliable and flexible tool providing spatial data on solar radiation for the study area.
Go to article

Abstract

Aluminum 6082-T6 panels were joined by friction stir welding utilizing a bobbin tool. A thermal simulation of the process was developed based upon machine torque and the temperature dependent yield stress utilizing a slip factor and an assumed coefficient of friction. The torque-based approach was compared to another simulation established on the shear layer methodology (SLM), which does not require the slip factor or coefficient of friction as model inputs. The SLM simulation, however, only models heat generation from the leading edges of the tool. Ultimately, the two approaches yielded matching temperature predictions as both methodologies predicted the same overall total heat generation from the tool. A modified shear layer approach is proposed that adopts the flexibility and convenience of the shear layer method, yet models heat generation from all tool/workpiece interfaces.
Go to article

This page uses 'cookies'. Learn more