Search results

Filters

  • Journals
  • Keywords
  • Date

Search results

Number of results: 5
items per page: 25 50 75
Sort by:

Abstract

An analysis of the power system functioning and the behaviors of the energy market participants allows the trends taking place within years to be identified, including these associated with the evolution of the electric energy and power demand profiles. The problems of balancing the peak power demand are of both a short and long term nature, which implies the need for changes in the electricity generation sector. Apart from the existing “silo-type” generation units, the construction of distributed energy sources implemented in the civic formula in the framework of self-sufficient energy communes and energy clusters is becoming increasingly important. Support for these programs is realized both at the legislative level, as well as within dedicated competitions and ministerial activities. The financial support carried out by the National Fund for Environmental Protection and Water Management and the Regional Operational Programs is also noticeable. One of the activities aimed at spreading the idea of clustering was the competition for certified energy clusters, conducted by the Ministry of Energy. The goal of the contest was the promotion and development of the distributed energy sector, which could be used for the improvement of energy security in the local manner and constitute a basis for the knowledge necessary in planning and developing the state’s energy policy. The paper presents a synthetic analysis of the results of the competition for a certified energy cluster from the perspective of planning and operational needs related to the functioning of the power system. Further, the information about the investment plans of new generation capacities, including their breakdown with respect to type, achievable power and costs has been provided. Also, the balancing of the demand for electric energy by own generation within the energy clusters has been characterized for three time perspectives
Go to article

Abstract

The development of electromobility is a challenge for the power system in both technical and economic-market terms. As of today, there are no analyses to determine the power necessary to supply the planned infrastructure and to estimate the incentives and economic benefits resulting from the modification of the settlement method. The document determining the legal regulations and the obligation to build vehicle charging stations for specific municipalities is the Act on Electromobility and Alternative Fuels. This act estimates that the development of electromobility, due to the specifics including not only individual vehicles, will take place in certain areas. The places which in the first stage will be dedicated to the potential implementation of the concept of electromobility will be municipalities covering large agglomerations. In addition, due to the local aspect, the development of electromobility may take place in the areas of energy clusters’ initiatives, which, using the policy of increasing energy awareness, are aimed at energy production from local renewable energy resources. The planned development of electromobility assumes a systematic increase in the number of electric cars caused by the introduction of support systems. The dynamization of this sector will cause an increase in the demand for electricity. Due to power system reasons, an important factor determining the level of energy consumption depending on the time of day may be an appropriate shape of the pricing for the charging service. Appropriate price list stimulation can affect the behavior of recipients, causing the charging of cars in the off-peak of electricity demand. The aim of the article is to characterize the scale of the phenomenon of electromobility in the context of the emergence of a charging points infrastructure along with the possibility of price-setting stimulation affecting the profile of energy demand. It is also important to consider the challenges and responsibilities of municipalities and energy clusters from the perspective of introducing electromobility.
Go to article

Abstract

Rynek energii w Polsce sukcesywnie ewoluuje w kierunku promowania i intensywnego rozwoju energetyki obywatelskiej przekładającego się na różnego rodzaju inicjatywy i działania o zasięgu regionalnym i lokalnym. Jednym z takich działań jest dążenie do szeroko rozumianego stworzenia właściwych warunków do budowy samowystarczalności energetycznej na poziomie gmin. Cel ten ma charakter perspektywiczny i może być ciekawą alternatywą dla energetyki zawodowej w obszarze poprawy bezpieczeństwa energetycznego i tworzenia zasobów wytwórczych bazujących na lokalnej strukturze energy-mix. Równolegle tworzone są regulacje, mechanizmy i narzędzia wspierające realizację tych celów. W artykule opisany został przykładowy model postępowania, który wpisuje się w realizację celu uzyskania samowystarczalności energetycznej jednej z gmin rolniczych. Koncepcja ta dotyczy budowy klastra energii na podstawie partnerstwa publiczno-prywatnego. W ramach inicjatyw klastrowych możliwe staje się stworzenie lokalnych obszarów samowystarczalności energetycznej, gwarantującej uczestnikom klastra osiąganie korzyści na poziomie zarówno partykularnym, jak i zbiorowym. Na poziomie indywidualnych korzyści odbiorcy mogą uzyskać tańszą energię elektryczną i ciepło, a wytwórcy korzystniejsze względem rynkowych ceny sprzedaży energii. W ramach dodatkowych korzyści uzyskuje się pobudzenie gospodarki na poziomie lokalnym i regionalnym, wzrost konkurencyjności oraz poprawę bezpieczeństwa dostaw mediów. W artykule przedstawiono także wyniki analiz bilansu energetycznego gminy wraz z rekomendacją w zakresie technologii gwarantujących uzyskanie samowystarczalności energetycznej. Dla wybranej technologii zilustrowany został proces realizacji inwestycji w źródło wytwórcze wraz z oceną przychodowo-kosztową, modelem finansowania i bilansem korzyści po stronie uczestników klastra. Dowiedziona została tym samym teza, że klastry energii mogą być skutecznym narzędziem realizacji celu samowystarczalności energetycznej gmin.
Go to article

Abstract

Economic development is strictly dependent on access to inexpensive and reliable energy sources based on diversified primary fuels. The strategic framework for the construction of the energy mix is defined in the Energy Policy of the State, the content of which, in terms of its mandatory elements, has been specified in the Energy Law. The task of the Energy Policy of the State is to create the shape of the future power sector, including designing the most advantageous regulatory, system and technical solutions guaranteeing the appropriate level of energy security of the country, monitoring of the system’s evolution and also designing and implementing changes aimed at the optimization of the functioning mechanisms. The vision of the development of the power system at the global level should also reflect changes in the formation of dispersed civil energy structures. Unfortunately, the results of the conducted analyses reveal existing imperfections of the data acquisition and information system, which should be used in the planning process. This issue is particularly important from the perspective of the dynamically developing concept of the energy self-sufficiency of communes and the emergence of energy clusters. The present paper describes the functioning of strategic planning in the field of the electric power system with an illustration of the improperly functioning mechanisms of information transfer in the context of the advancement of dispersed civil energy structures.
Go to article

Abstract

The paper presents the idea of a prosumer energy cloud as a new service dedicated to electricity prosumers. The implementation of the cloud should generate a number of benefits in the following areas: settlements between prosumer and electricity supplier, the development of distributed energy sources in microprocessors and the development of e-mobility. From the prosumer point of view, the proposed idea of a prosumer cloud of energy is dedicated to the virtual storage of energy excess generated in the micro-installation. Physical energy storage in the cloud means recording the volume of electricity introduced into the electricity system from the prosumer’s microprocessors. It is assumed that the energy equivalent to the volume registered in the prosumer cloud can be used at any time at any point in the network infrastructure of the National Power System. Any point of network infrastructure shall be understood as any locally located point of connection of an electricity consumer provided with access authorization. From the point of view of the power grid operators, the idea of a prosumer energy cloud is a conceptual proposition of a service dedicated to the new model of the power system functioning, taking future conditions concerning the significant development of prosumer energy and e-mobility into account. In this concept, electricity would be treated as a commodity only to partial physical storage and above all to trade. In this model a key aspect would be virtual energy storage, that is, the commercial provision by the cloud operator (trading company) of any use of the electricity portfolio by its suppliers. It should be stressed, however, that in the prosumer’s energy cloud functioning, a significant factor would be the cost of guarantees of the use of energy by prosumers at any time and point of connection to the network. This results in the need of taking the presence of certain market risks, both volumetric and cost incurred by clouds operator, which can be minimized by passing a portion of the accumulated volume of generated energy to the cloud operator into account. It should be emphasized that this article presents the first phase of the development of the concept of prosumer energy cloud. However, it is planned to be expanded by the following stages, which include the possibility of controlling and supervising the operation of prosumer installations such as: sources, receivers and physical energy stores, e.g. home energy storage or batteries installed in electric vehicles. Ultimately, it is assumed that the proposed prosumer energy cloud will be outside of the storage of energy (virtual and partly physical) and that aggregation of prosumer resources will create new possibilities for their use to provide a variety of regulatory services, including system ones.
Go to article

This page uses 'cookies'. Learn more