Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy publikacji
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 4
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

Ductile iron was quenched using two-variant isothermal transformation. The first treatment variant consisted of one-phase austenitization at a temperature tγ = 830, 860 or 900°C, cooling down to an isothermal transformation temperature of 300 or 400°C and holding from 8 to 64 minutes. The second treatment variant consisted of two-phase austenitization. Cast iron was austenitizied at a temperature tγ = 950°C and cooled down to a supercritical temperature tγ’ = 900, 860 or 830°C. Isothermal transformation was conducted under the same conditions as those applied to the first variant. Ferrite cast iron was quenched isothermally. Basic strength (Rp0.2, Rm) and plastic (A5) properties as well as matrix microstructure and hardness were examined. As a result of heat treatment, the following ADI grades were obtained: EN-GJS-800-8, EN-GJS-1200-2 and EN-GJS-1400-1 in accordance with PN–EN 1564:2000 having plasticity of 1.5÷4 times more than minimum requirements specified in the standard.
Przejdź do artykułu

Abstrakt

This scientific paper presents the research on influence of austenitizing temperature on kinetics and evolution of the spheroidal plain cast iron during eutectoid reaction in isothermal conditions. The cast iron has been austenitized in temperatures of 900, 960 or 1020°C. There were two temperature values of isothermal holding taken into consideration: 760 or 820°C. The order of creation of reaction products and their morphology have been analyzed. The particular attention has been paid to the initial stage of transformation. The qualitative research has been executed using the transmission electron microscope (TEM), as well as quantitative research (LM). The influence of austenitizing temperature has also been determined on transformation kinetics and structural composition. It was found that the increase of austenitizing temperature is conductive to the initial release of structures by metastable system. A reduction of time was observed of the initial stage of transformation at temperature close to Ar12 with its simultaneous elongation at temperature close to Ar11, with an increase of austenitizing temperature. The dependences obtained by the metallographic method confirm the prior results of dilatometric research of eutectoid reaction.
Przejdź do artykułu

Abstrakt

One type of spheroidal cast iron, with additions of 0.51% Cu and 0.72% Ni, was subjected to precipitation hardening. Assuming that the greatest increase in hardness after the shortest time of ageing is facilitated by chemical homogenisation and fragmentation of cast iron grain matrix, precipitation hardening after pre-normalisation was executed. Hardness (HB), microhardness (HV), qualitative and quantitative metalographic (LM, SEM) and X-ray structural (XRD) tests were performed. The acquired result of 13.2% increase in hardness after ca. 5-hour ageing of pre-normalised cast iron confirmed the assumption.
Przejdź do artykułu

Abstrakt

This work presents the qualitative and quantitative changes in the products of isothermal transformation (reaction) in a ductile cast iron austenite after supercooling to the temperature range Ar1. The austenitizing temperature considered in this work was 900, 960 or 1020°C. The eutectoid reaction was investigated by metallographic examination at a holding temperature right below Ar11 (820°C) or right below Ar12 (760°C). The quantitative metallographic examination was carried out with a light microscope (LM). The initial transformation stage products were identified with a transmission electron microscope (TEM). The selected samples were studied for chemical microsegregation of manganese, silicon, phosphorus, and carbon with an X-ray microanalyser (MAR). The tested cast iron material was found to predominantly feature a eutectoid reaction in the metastable system the ratio of which was increasing with the austenitizing temperature. The austenitizing temperature was found to be conducive to the evolution kinetics of individual phases and to the graphitization kinetics of the eutectoid cementite that was formed during the contemplated reaction.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji