Search results

Filters

  • Journals
  • Date

Search results

Number of results: 8
items per page: 25 50 75
Sort by:

Abstract

The paper describes the construction, operation and test results of three most popular interpolators from a viewpoint of time-interval (TI) measurement systems consisting of many tapped-delay lines (TDLs) and registering pulses of a wide-range changeable intensity. The comparison criteria include the maximum intensity of registered time stamps (TSs), the dependency of interpolator characteristic on the registered TSs’ intensity, the need of using either two counters or a mutually-complementing pair counter-register for extending a measurement range, the need of calculating offsets between TDL inputs and the dependency of a resolution increase on the number of used TDL segments. This work also contains conclusions about a range of applications, usefulness and methods of employing each described TI interpolator. The presented experimental results bring new facts that can be used by the designers who implement precise time delays in the field-programmable gate arrays (FPGA).
Go to article

Abstract

Most systems used in quantum physics experiments require the efficient and simultaneous recording different multi-photon coincidence detection events. In such experiments, the single-photon gated counting systems can be applicable. The main sources of errors in these systems are both instability of the clock source and their imperfect synchronization with the excitation source. Below, we propose a solution for improvement of the metrological parameters of such measuring systems. Thus, we designed a novel integrated circuit dedicated to registration of signals from a photon number resolving detectors including a phase synchronizer module. This paper presents the architecture of a high-resolution (~60 ps) digital phase synchronizer module cooperating with a multi-channel coincidence counter. The main characteristic feature of the presented system is its ability to fast synchronization (requiring only one clock period) with the measuring process. Therefore, it is designed to work with various excitation sources of a very wide frequency range. Implementation of the phase synchronizer module in an FPGA device enabled to reduce the synchronization error value from 2.857 ns to 214.8 ps.
Go to article

Abstract

The designing process of high resolution time interval measurement systems creates many problems that need to be eliminated. The problems are: the latch error, the nonlinearity conversion, the different duty cycle coefficient of the clock signal, and the clock signal jitter. Factors listed above affect the result of measurement. The FPGA (Field Programmable Gate Array) structure also imposes some restrictions, especially when a tapped delay line is constructed. The article describes the high resolution time-to-digital converter, implemented in a FPGA structure, and the types of errors that appear there. The method of minimization and processing of data to reduce the influence of errors on the measurement is also described.
Go to article

Abstract

The ultrasonic flowmeter which is described in this paper, measures the transit of time of an ultrasonic pulse. This device consists of two ultrasonic transducers and a high resolution time interval measurement module. An ultrasonic transducer emits a characteristic wave packet (transmit mode). When the transducer is in receive mode, a characteristic wave packet is formed and it is connected to the time interval measurement module inputs. The time interval measurement module allows registration of transit time differences of a few pulses in the packet. In practice, during a single measuring cycle a few time-stamps are registered. Moreover, the measurement process is also synchronous and, by applying the statistics, the time interval measurement uncertainty improves even in a single measurement. In this article, besides a detailed discussion on the principle of operation of the ultrasonic flowmeter implemented in the FPGA structure, also the test results are presented and discussed
Go to article

Abstract

Respiratory disturbances frequently accompany stuttering. Their influence on lung ventilation can be assessed by measurement of the end-tidal CO2 concentration (EtCO2). The effectiveness of the CO2-based visual feedback method of breath regulation (VF) designed for stuttering therapy was tested in this study. The aim of the study was to answer the question if the VF helps to reduce respiratory disturbances in stuttering and increase speech fluency. 20 stuttering volunteers aged 13-45 years took part in the 3-parts test consisting of: 1. speaking without any techniques improving speech fluency, 2. learning the VF method, 3. VF-assisted speaking. The CO2/time signal and an acoustic signal of an utterance were recorded during the test. Significant increase of FE - the factor of breath ergonomics during speaking (based on both signals), from 47% to 71% (P < 0.01), and significant decrease of %SS - the percent of syllables stuttered, from 14% to 10% (P < 0.01) were received for VF-assisted utterances compared to the utterances without VF assistance. The results indicate that the VF can help to eliminate respiratory disturbances in stuttering and increase speech fluency.
Go to article

Abstract

Three methods of estimating radii of spray droplets are discussed and results of their practical application in the case of explosively produced water spray are reported. Parameters of model radii distributions are fitted using the least squares method. Finally, the data obtained for a number of tests are used for estimating fraction of explosion energy used for pulverization of water in the process of explosive production of water-spray.
Go to article

Abstract

Recently, a new class of ceramic foams with porosity levels up to 90% has been developed as a result of the association of the gelcasting process and aeration of the ceramic suspension. This paper presents and discusses original results advertising sound absorbing capabilities of such foams. The authors man- ufactured three types of alumina foams in order to investigate three porosity levels, namely: 72, 88, and 90%. The microstructure of foams was examined and typical dimensions and average sizes of cells (pores) and cell-linking windows were found for each porosity case. Then, the acoustic absorption coefficient was measured in a wide frequency range for several samples of various thickness cut out from the foams. The results were discussed and compared with the acoustic absorption of typical polyurethane foams proving that the alumina foams with high porosity of 88-90% have excellent sound absorbing properties competitive with the quality of sound absorbing PU foams of higher porosity.
Go to article

This page uses 'cookies'. Learn more