Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

Investment casting combined with the additive manufacturing technology enables production of the thin-walled elements, that are geometrically complex, precise and can be easy commercialized. This paper presents design of aluminium alloy honeycombs, which are characterized with light structure, internal parallel oriented channels and suitable stiffness. Based on 3D printed pattern the mould was prepared from standard ceramic material subjected subsequently to appropriate heat treatment. Into created mould cavity with intricate and susceptible structure molten AC 44200 aluminium alloy was poured under low pressure. Properly designed gating system and selected process parameters enabled to limit the shrinkage voids, porosities and misruns. Compression examination performed in two directions showed different mechanisms of cell deformation. Characteristic plateau region of stress-strain curves allowed to determine absorbed energy per unit volume, which was 485 or 402 J/mm3 depending on load direction. Elaborated technology will be applied for the production of honeycomb based elements designated for energy absorption capability.
Go to article

Abstract

3D printing is a technology with possibilities related to the production of elements of any geometry, directly from a digital project. Elements made of plastic are metalized to give new properties such as conductivity or corrosion resistance. In this work, experimental work related to the electroless deposition of metallic coatings on plastics was carried out. For this purpose, the copper and nickel coatings were catalytically deposited on elements printed using hard-lightened resin. The effect of the metallization time on the properties of copper and nickel coatings was determined. In addition, the process of deposition metals in the magnetic field was analyzed with different direction of magnetic field to the surface of the samples. The coatings were analyzed by XRF, XRD method and morphology of surface was observed by scanning electron microscopy (SEM).
Go to article

This page uses 'cookies'. Learn more