Search results

Filters

  • Journals
  • Date

Search results

Number of results: 6
items per page: 25 50 75
Sort by:

Abstract

The article presents results of pitting corrosion studies of selected silicon cast irons. The range of studies included low, medium and high silicon cast iron. The amount of alloying addition (Si) in examined cast irons was between 5 to 25 %. Experimental melts of silicon cast irons [1-3] were conducted in Department of Foundry of Silesian University of Technology in Gliwice and pitting corrosion resistance tests were performed in Faculty of Biomedical Engineering in Department of Biomaterials and Medical Devices Engineering of Silesian University of Technology in Zabrze. In tests of corrosion resistance the potentiostat VoltaLab PGP201 was used. Results obtained in those research complement the knowledge about the corrosion resistance of iron alloys with carbon containing Si alloying addition above 17 % [4-6]. Obtained results were supplemented with metallographic examinations using scanning electron microscopy. The analysis of chemical composition for cast irons using Leco spectrometer was done and the content of alloying element (silicon) was also determined using the gravimetric method in the laboratory of the Institute of Welding in Gliwice. The compounds of microstructure were identify by X-ray diffraction.
Go to article

Abstract

In the research, relationships between matrix structure and hardness of high-quality Ni-Mn-Cu cast iron containing nodular graphite and nickel equivalent value were determined. Nickel equivalent values were dependent on chemical composition and differences between them resulted mostly from nickel concentration in individual alloys. Chemical compositions of the alloys were selected to obtain, in raw condition, austenitic and austenitic-martensitic cast iron. Next, stability of matrix of raw castings was determined by dilatometric tests. The results made it possible to determine influence of nickel equivalent on martensite transformation start and finish temperatures.
Go to article

Abstract

One type of spheroidal cast iron, with additions of 0.51% Cu and 0.72% Ni, was subjected to precipitation hardening. Assuming that the greatest increase in hardness after the shortest time of ageing is facilitated by chemical homogenisation and fragmentation of cast iron grain matrix, precipitation hardening after pre-normalisation was executed. Hardness (HB), microhardness (HV), qualitative and quantitative metalographic (LM, SEM) and X-ray structural (XRD) tests were performed. The acquired result of 13.2% increase in hardness after ca. 5-hour ageing of pre-normalised cast iron confirmed the assumption.
Go to article

Abstract

The paper presents the results of abrasive wear resistance tests carried out on high-vanadium cast iron with spheroidal VC carbides. The cast iron of eutectic composition was subjected to spheroidising treatment using magnesium master alloy. The tribological properties were examined for the base cast iron (W), for the cast iron subjected to spheroidising treatment (S) and for the abrasion-resistant steel (SH). Studies have shown that high-vanadium cast iron with both eutectic carbides and spheroidal carbides has the abrasion resistance twice as high as the abrasion-resistant cast steel. The spheroidisation of VC carbides did not change the abrasion resistance compared to the base high-vanadium grade.
Go to article

Abstract

The paper presents the results of tests on the spheroidising treatment of vanadium carbides VC done with magnesium master alloy and mischmetal. It has been proved that the introduction of magnesium master alloy to an Fe-C-V system of eutectic composition made 34% of carbides crystallise in the form of spheroids. Adding mischmetal to the base alloy melt caused 28% of the vanadium carbides crystallise as dendrites. In base alloy without the microstructure-modifying additives, vanadium carbides crystallised in the form of a branched fibrous eutectic skeleton. Testing of mechanical properties has proved that the spheroidising treatment of VC carbides in high-vanadium cast iron increases the tensile strength by about 60% and elongation 14 - 21 times, depending on the type of the spheroidising agent used. Tribological studies have shown that high-vanadium cast iron with eutectic, dendritic and spheroidal carbides has the abrasive wear resistance more than twice as high as the abrasion-resistant cast steel.
Go to article

Abstract

High-vanadium cast iron is the white cast iron in which the regular fibrous γ + VC eutectic with the volume fraction of vanadium carbide amounting to about 20% crystallises. This paper presents the results of studies on high-vanadium cast iron subjected to the inoculation treatment with magnesium master alloy. The aim of this operation is to change the morphology of the crystallising VC carbides from the fibrous shape into a spheroidal one. The study also examines the effect of the amount of the introduced inoculant on changes in the morphology of the crystallising VC carbides. To achieve the goals once set, metallographic studies were performed on high-vanadium cast iron of eutectic composition in base state and after the introduction of a variable content of the inoculant. The introduction of magnesium-based master alloy resulted in the expected changes of microstructure. The most beneficial effect was obtained with the introduction of 1.5% of magnesium master alloy, since nearly half of the crystallised vanadium carbides have acquired a spheroidal shape.
Go to article

This page uses 'cookies'. Learn more