Search results

Filters

  • Journals
  • Date

Search results

Number of results: 9
items per page: 25 50 75
Sort by:

Abstract

Journal bearings are the most common type of bearings in which a shaft freely rotates in a metallic sleeve. They find a lot of applications in industry, especially where extremely high loads are involved. Proper analysis of the various bearing faults and predicting the modes of failure beforehand are essential to increase the working life of the bearing. In the current study, the vibration data of a journal bearing in the healthy condition and in five different fault conditions are collected. A feature extraction method is employed to classify the different fault conditions. Automatic fault classification is performed using artificial neural networks (ANN). As the probability of a correct prediction goes down for a higher number of faults in ANN, the method is made more robust by incorporating deep neural networks (DNN) with the help of autoencoders. Training was done using the scaled conjugate gradient algorithm and the performance was calculated by the cross entropy method. Due to the increased number of hidden layers in DNN, it is possible to achieve a high efficiency of 100% with the feature extraction method.
Go to article

Abstract

This paper presents a new test method able to infer - in periods of less than 7 seconds - the refrigeration capacity of a compressor used in thermal machines, which represents a time reduction of approximately 99.95% related to the standardized traditional methods. The method was developed aiming at its application on compressor manufacture lines and on 100% of the units produced. Artificial neural networks (ANNs) were used to establish a model able to infer the refrigeration capacity based on the data collected directly on the production line. The proposed method does not make use of refrigeration systems and also does not require using the compressor oil.
Go to article

Abstract

Self-aligning roller bearings are an integral part of the industrial machinery. The proper analysis and prediction of the various faults that may happen to the bearing beforehand contributes to an increase in the working life of the bearing. This study aims at developing a novel method for the analysis of the various faults in self-aligning bearings as well as the automatic classification of faults using artificial neural network (ANN) and deep neural network (DNN). The vibration data is collected for six different faults as well as for the healthy bearing. Empirical mode decomposition (EMD) followed by Hilbert Huang transform is used to extract instantaneous frequency peaks which are used for fault analysis. Time domain and time-frequency domain features are then extracted which are used to implement the neural networks through the pattern recognition tool in MATLAB. A comparative study of the outputs from the two neural networks is also performed. From the confusion matrix, the efficiency of the ANN has been found to be 95.7% and using DNN has been found to be 100%.
Go to article

Abstract

Malignant melanomas are the most deadly type of skin cancer, yet detected early have high chances of successful treatment. In the last twenty years, the interest in automatic recognition and classification of melanoma dynamically increased, partly because of appearing public datasets with dermatoscopic images of skin lesions. Automated computer-aided skin cancer detection in dermatoscopic images is a very challenging task due to uneven sizes of datasets, huge intra-class variation with small interclass variation, and the existence of many artifacts in the images. One of the most recognized methods of melanoma diagnosis is the ABCD method. In the paper, we propose an extended version of this method and an intelligent decision support system based on neural networks that uses its results in the form of hand-crafted features. Automatic determination of the skin features with the ABCD method is difficult due to the large diversity of images of various quality, the existence of hair, different markers and other obstacles. Therefore, it was necessary to apply advanced methods of pre-processing the images. The proposed system is an ensemble of ten neural networks working in parallel, and one network using their results to generate a final decision. This system structure enables to increase the efficiency of its operation by several percentage points compared with a single neural network. The proposed system is trained on over 5000 and tested afterwards on 200 skin moles. The presented system can be used as a decision support system for primary care physicians, as a system capable of self-examination of the skin with a dermatoscope and also as an important tool to improve biopsy decision making.
Go to article

Abstract

Artificial neural networks are one of the modern methods of the production optimisation. An attempt to apply neural networks for controlling the quality of bentonite moulding sands is presented in this paper. This is the assessment method of sands suitability by means of detecting correlations between their individual parameters. The presented investigations were aimed at the selection of the neural network able to predict the active bentonite content in the moulding sand on the basis of this sand properties such as: permeability, compactibility and the compressive strength. Then, the data of selected parameters of new moulding sand were set to selected artificial neural network models. This was made to test the universality of the model in relation to other moulding sands. An application of the Statistica program allowed to select automatically the type of network proper for the representation of dependencies occurring in between the proposed moulding sand parameters. The most advantageous conditions were obtained for the uni-directional multi-layer perception (MLP) network. Knowledge of the neural network sensitivity to individual moulding sand parameters, allowed to eliminate not essential ones.
Go to article

Abstract

When an artificial neural network is used to determine the value of a physical quantity its result is usually presented without an uncertainty. This is due to the difficulty in determining the uncertainties related to the neural model. However, the result of a measurement can be considered valid only with its respective measurement uncertainty. Therefore, this article proposes a method of obtaining reliable results by measuring systems that use artificial neural networks. For this, it considers the Monte Carlo Method (MCM) for propagation of uncertainty distributions during the training and use of the artificial neural networks.
Go to article

Abstract

Presented are results of a research on the possibility of using artificial neural networks for forecasting mechanical and technological parameters of moulding sands containing water-glass, hardened in the innovative microwave heating process. Trial predictions were confronted with experimental results of examining sandmixes prepared on the base of high-silica sand, containing various grades of sodium water-glass and additions of a wetting agent. It was found on the grounds of obtained values of tensile strength and permeability that, with use of artificial neural networks, it is possible complex forecasting mechanical and technological properties of these materials after microwave heating and the obtained data will be used in further research works on application of modern analytic methods for designing production technology of high-quality casting cores and moulds.
Go to article

Abstract

There were two aims of the research. One was to enable more or less automatic confirmation of the known associations – either quantitative or qualitative – between technological data and selected properties of concrete materials. Even more important is the second aim – demonstration of expected possibility of automatic identification of new such relationships, not yet recognized by civil engineers. The relationships are to be obtained by methods of Artificial Intelligence, (AI), and are to be based on actual results from experiments on concrete materials. The reason of applying the AI tools is that in Civil Engineering the real data are typically non perfect, complex, fuzzy, often with missing details, which means that their analysis in a traditional way, by building empirical models, is hardly possible or at least can not be done quickly. The main idea of the proposed approach was to combine application of different AI methods in a one system, aimed at estimation, prediction, design and/or optimization of composite materials. The paradigm of the approach is that the unknown rules concerning the properties of concrete are hidden in experimental results and can be obtained from the analysis of examples. Different AI techniques like artificial neural networks, machine learning and certain techniques related to statistics were applied. The data for the analysis originated from direct observations and from reports and publications on concrete technology. Among others it has been demonstrated that by combining different AI methods it is possible to improve the quality of the data, (e.g. when encountering outliers and missing values or in clustering problems), so that the whole data processing system will be giving better prediction, (when applying ANNs), or the newly discovered rules will be more effective, (e.g. with descriptions more complete and – at the same time – possibly more consistent, in case of ML algorithms).
Go to article

This page uses 'cookies'. Learn more