Search results

Filters

  • Journals
  • Date

Search results

Number of results: 4
items per page: 25 50 75
Sort by:

Abstract

No-bake process refers to the use of chemical binders to bond the moulding sand. Sand is moved to the mould fill station in preparation for filling of the mould. A mixer is used to blend the sand with the chemical binder and activator. As the sand exits the mixer, the binder begins the chemical process of hardening. This paper presents the results of decomposition of the moulding sands with modified ureafurfuryl resin (with the low content of furfuryl alcohol below 25 % and different activators: organic and inorganic) on a quartz matrix, under semi-industrial conditions. Investigations of the gases emission in the test foundry plant were executed according to the method extended in the Faculty of Foundry Engineering (AGH University of Science and Technology). Article presents the results of the emitted chosen aromatic hydrocarbons and loss on ignition compared with the different activators used to harden this resin. On the bases of the data, it is possible to determine the content of the emitted dangerous substances from the moulding sand according to the content of loss on ignition.
Go to article

Abstract

Emission of gases under high temperature after pouring molten metal into moulds, which contain the organic binder or other additives (solvents or curing agent), may be an important factor influencing both on the quality of the produced castings, and on the state of environment. Therefore, a comprehensive study of the emitted gases would allow to determine restrictions on the use of the moulding sands in foundry technologies, eg. the probability of occurrence of casting defects, and identify the gaseous pollutants emitted to the environment. The aim of the research presented in this paper was to determine the amount of gases that are released at high temperatures from moulding sands bonded by biopolymer binder and the quantitative assessment of the emitted pollutants with particular emphasis on chemical compounds: benzene, toluene, ethylbenzene and xylenes (BTEX). The water-soluble modified potato starch as a sodium carboxymethyl starch with low (CMS-NaL) or high (CMS-NaH) degree of substitution was a binder in the tested moulding sands. A tests of gases emission level were conducted per the procedure developed at the Faculty of Foundry Engineering (AGH University of Science and Technology) involving gas chromatography method (GC). The obtained results of the determination of amount of BTEX compounds generated during the decomposition process of starch binders showed lower emission of aromatic hydrocarbons in comparison with binder based on resin Kaltharz U404 with the acidic curing agent commonly used in the foundries.
Go to article

Abstract

The results of investigations of three commercial binders applied in the Alphaset technology marked as: Sample E , Sample T and Sample S are presented in the hereby paper. These samples were subjected to the pyrolysis process at a temperature of 900°C (inert atmosphere, He 99.9999). The gas chromatograph coupled with the mass spectrometer and pyrolizer (Py-GC/MS) were used in the study. The identification of gases emitted during the thermal decomposition was performed on the basis of the mass spectral library. The obtained results indicate a certain diversification of emitted gases. Among the pyrolysis products the following harmful substances were identified: furfuryl alcohol, formaldehyde, phenol and also substances from the BTEX (benzene, toluene and ethylobezneze and xylenes) PAHs (Polycyclic Aromatic Hydrocarbons) and VOC groups (Volatile Organic Compounds). Therefore, from the environment protection point of view performing systematic investigations concerning the harmfulness of binders applied in the moulding and core sands technology, is essential.
Go to article

Abstract

The furan resin offers advantages such as high intensity, low viscosity, good humidity resistance and is suitable for cast different casting alloys: steel, cast iron and non-ferrous metal casting. For hardening furan resins are used different hardeners (acid catalysts). The acid catalysts have significant effects on the properties of the cured binder (e,g. binding strength and thermal stability) [1 - 3]. Investigations of the gases emission in the test foundry plant were performed according to the original method developed in the Faculty of Foundry Engineering, AGH UST. The analysis is carried out by the gas chromatography method with the application of the flame-ionising detector (FID) (TRACE GC Ultra THERMO SCIENTIFIC).
Go to article

This page uses 'cookies'. Learn more