Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 177
items per page: 25 50 75
Sort by:

Abstract

The paper presents the initial results of investigation concerning the abrasion resistance of cast iron with nodular, vermicular, or flake graphite. The nodular and vermicular cast iron specimens were cut out of test coupons of the IIb type with the wall thickness equal to 25 mm, while the specimens made of grey cast iron containing flake graphite were cut out either of special casts with 20 mm thick walls or of the original brake disk. The abrasion tests were carried out by means of the T-01M tribological unit working in the pin-on-disk configuration. The counterface specimens (i.e. the disks) were made of the JT6500 brand name friction material. Each specimen was abraded over a distance of 4000 m. The mass losses, both of the specimens and of the counterface disks, were determined by weighting. It was found that the least wear among the examined materials was exhibited by the nodular cast iron. In turn, the smallest abrasion resistance was found in vermicular cast iron and in cast iron containing flake graphite coming from the brake disk. However, while the three types of specimens (those taken from the nodular cast iron and from grey cast iron coming either from the special casts or from the brake disk) have almost purely pearlitic matrix (P95/Fe05), the vermicular cast iron matrix was composed of pearlite and ferrite occurring in the amounts of about 50% each (P50/Fe50). Additionally, it was found that the highest temperature at the cast iron/counterface disk contact point was reached during the tests held for the nodular cast iron, while the lowest one occurred for the case of specially cast grey iron.
Go to article

Abstract

Results of a research on influence of chromium, molybdenum and aluminium on structure and selected mechanical properties of Ni-Mn-Cu cast iron in the as-cast and heat-treated conditions are presented. All raw castings showed austenitic matrix with relatively low hardness, making the material machinable. Additions of chromium and molybdenum resulted in higher inclination to hard spots. However, a small addition of aluminium slightly limited this tendency. Heat treatment consisting in soaking the castings at 500 °C for 4 h resulted in partial transformation of austenite to acicular, carbon-supersaturated ferrite, similar to the bainitic ferrite. A degree of this transformation depended not only on the nickel equivalent value (its lower value resulted in higher transformation degree), but also on concentrations of Cr and Mo (transformation degree increased with increasing total concentration of both elements). The castings with the highest hard spots degree showed the highest hardness, while hardness increase, caused by heat treatment, was the largest in the castings with the highest austenite transformation degree. Addition of Cr and Mo resulted in lower thermodynamic stability of austenite, so it appeared a favourable solution. For this reason, the castings containing the highest total amount of Cr and Mo with an addition of 0.4% Al (to reduce hard spots tendency) showed the highest tensile strength.
Go to article

Abstract

Ablation casting is a technological process in which the increased cooling rate causes microstructure refinement, resulting in improved mechanical properties of the final product. This technology is particularly suitable for the manufacture of castings with intricate shapes and thin walls. Currently, the ablation casting process is not used in the Polish industry. This article presents the results of strength tests carried out on moulding sands based on hydrated sodium silicate hardened in the Floster S technology, intended for ablation casting of the AlSi7Mg (AK7) aluminium alloy. When testing the bending and tensile strengths of sands, parameters such as binder and hardener content were taken into account. The sand mixtures were tested after 24h hardening at room temperature. The next stage of the study describes the course of the ablation casting process, starting with the manufacture of foundry mould from the selected moulding mixture and ending in tests carried out on the ready casting to check the surface quality, structure and mechanical properties. The results were compared with the parallel results obtained on a casting gravity poured into the sand mould and solidifying in a traditional way at ambient temperature.
Go to article

Abstract

Investment casting combined with the additive manufacturing technology enables production of the thin-walled elements, that are geometrically complex, precise and can be easy commercialized. This paper presents design of aluminium alloy honeycombs, which are characterized with light structure, internal parallel oriented channels and suitable stiffness. Based on 3D printed pattern the mould was prepared from standard ceramic material subjected subsequently to appropriate heat treatment. Into created mould cavity with intricate and susceptible structure molten AC 44200 aluminium alloy was poured under low pressure. Properly designed gating system and selected process parameters enabled to limit the shrinkage voids, porosities and misruns. Compression examination performed in two directions showed different mechanisms of cell deformation. Characteristic plateau region of stress-strain curves allowed to determine absorbed energy per unit volume, which was 485 or 402 J/mm3 depending on load direction. Elaborated technology will be applied for the production of honeycomb based elements designated for energy absorption capability.
Go to article

Abstract

The mathematical model and numerical simulations of the solidification of a cylindrical shaped casting, which take into account the process of filling the mould cavity by liquid metal and feeding the casting through the riser during its solidification, are presented in the paper. Mutual dependence of thermal and flow phenomena were taken into account because have an essential influence on solidification process. The effect of the riser shape on the effectiveness of feeding of the solidifying casting was determined. In order to obtain the casting without shrinkage defects, an appropriate selection of riser shape was made, which is important for foundry practice. Numerical calculations of the solidification process of system consisting of the casting and the conical or cylindrical riser were carried out. The velocity fields have been obtained from the solution of momentum equations and continuity equation, while temperature fields from solving the equation of heat conductivity containing the convection term. Changes in thermo-physical parameters as a function of temperature were considered. The finite element method (FEM) was used to solve the problem.
Go to article

Abstract

Early Buddhism was a predominantly spiritual movement which should ideally culminate in Enlightenment. Yet, it was embedded in the specific social environment of ancient India which included a hereditary caste system. Using the Buddhist Pāli texts and non-Buddhist literature from up until the last centuries BCE the article examines the four main hereditary categories (vaṇṇa, jāti, gotta, and kula) and how Early Buddhism related to them. We conclude that the Buddha and Early Buddhism did not oppose but rather confirmed the hereditary systems in society as well as its designations within the monastic community. The Buddha hereby followed the customs of earlier ascetic movements and imposed no specific rules on the monastics to eradicate their former social identity.
Go to article

Abstract

This paper presents matters related to production of ceramic and cast iron composite. The composite was made with the use of a foam structured ceramic insert. The tests included measuring of hardness, impact strength and resistance to abrasive wear of the composite produced. On the basis of obtaining results was stated that the use of foamed ceramic filters provides good conditions of filling a ceramic framework with molten grey or chromium cast iron. The growth of hardness of the ceramic- grey cast iron composite is ca. 60% as compared to the grey cast iron hardness. The growth of hardness of the ceramic- chromium cast iron composite is slight and does not exceed 5 % in comparison to the chromium cast iron. Introduction of the ceramic inserts deteriorates the cast iron impact strength by ca. 20 - 30 %. The use of ceramic inserts increases the resistance to abrasive wear in case of grey cast iron by ca. 13% and in case of the chromium cast iron by ca. 10 %.
Go to article

Abstract

The article presents results of pitting corrosion studies of selected silicon cast irons. The range of studies included low, medium and high silicon cast iron. The amount of alloying addition (Si) in examined cast irons was between 5 to 25 %. Experimental melts of silicon cast irons [1-3] were conducted in Department of Foundry of Silesian University of Technology in Gliwice and pitting corrosion resistance tests were performed in Faculty of Biomedical Engineering in Department of Biomaterials and Medical Devices Engineering of Silesian University of Technology in Zabrze. In tests of corrosion resistance the potentiostat VoltaLab PGP201 was used. Results obtained in those research complement the knowledge about the corrosion resistance of iron alloys with carbon containing Si alloying addition above 17 % [4-6]. Obtained results were supplemented with metallographic examinations using scanning electron microscopy. The analysis of chemical composition for cast irons using Leco spectrometer was done and the content of alloying element (silicon) was also determined using the gravimetric method in the laboratory of the Institute of Welding in Gliwice. The compounds of microstructure were identify by X-ray diffraction.
Go to article

Abstract

Results of investigations of wear resistant of two species of cast steel were introduced in the article (low-alloyed and chromium cast steel) on the background of the standard material which was low alloy wear resistant steel about the trade name CREUSABRO ®8000. The investigations were executed with two methods: abrasive wears in the stream of loose particles (the stream of quartz sand) and abrasive wears particles fixed (abrasive paper with the silicon carbide). Comparing the results of investigations in the experiments was based about the counted wear index which characterizes the wears of the studied material in the relation to the standard material.
Go to article

Abstract

The work presents the results of the experimental research concerning the impact of a heat treatment (toughening) of aluminum bronze CuAl10Fe4Ni4 on its mechanical properties. The conditions of the experiments and selected results are described. A detailed description of the effects of individual heat treatment conditions namely low and high temperature aging is also presented in the work.
Go to article

Abstract

The results of studies on the use of magnesium alloy in modern Tundish for production of vermicular graphite cast irons were described. This paper describes the results of using a low-magnesium ferrosilicon alloy for the production of vermicular graphite cast irons. The paper presents a vermicular (and nodular) graphite in different walled castings. The results of trials have shown that the magnesium Tundish process can produce high quality vermicular graphite irons under the specific industrial conditions of Foundries - Odlewnie Polskie S.A. in Starachowice. In this work describes too preliminary studies on the oxygen state in cast iron and their effect on graphite crystallization.
Go to article

Abstract

The paper presents the issue of synthetic cast iron production in the electric induction furnace exclusively on the steel scrap base. Silicon carbide and synthetic graphite were used as carburizers. The carburizers were introduced with solid charge or added on the liquid metal surface. The chemical analysis of the produced cast iron, the carburization efficiency and microstructure features were presented in the paper. It was stated that ferrosilicon can be replaced by silicon carbide during the synthetic cast iron melting process. However, due to its chemical composition (30% C and 70% Si) which causes significant silicon content in iron increase, the carbon deficit can be partly compensated by the carburizer introduction. Moreover it was shown that the best carbon and silicon assimilation rate is obtained where the silicon carbide is being introduced together with solid charge. When it is thrown onto liquid alloy surface the efficiency of the process is almost two times less and the melting process lasts dozen minutes long. The microstructure of the cast iron produced with the silicon carbide shows more bulky graphite flakes than inside the microstructure of cast iron produced on the pig iron base.
Go to article

Abstract

Structure, and thus the mechanical properties of steel are primarily a function of chemical composition and the solidification process which can be influenced by the application of the inoculation treatment. This effect depends on the modifier used. The article presents the results of studies designed to assess the effects of structural low alloy steel inoculation by selected modifying additives. The study was performed on nine casts modeled with different inoculants, assessment of the procedure impact was based on the macrostructure of made castings. The ratio of surface area equivalent to the axial zone of the crystals and columnar crystals zone was adopted as a measure of the inoculation effect.
Go to article

Abstract

The rebuilding technologies are used to develop surface of ladle. Among many welding methods currently used to obtain surface layer without defects one of the most effective way of rebuilding is using metal arc welding. This additional material gives more possibilities to make expected quality of rebuild surface. Chemical composition, property and economic factors allow to use metal wire. Because of these reasons, solid wire gives opportunity to be wildly used as material to rebuild or repair the surface in different sectors of industry. The paper shows a few ways to rebuild the surface in the massive cast with the use of metal active gas welding for repair. The work presents studies of defect in the massive cast. It contains the pictures of microstructures and defects. The method of removing defects and the results of checking by visual and penetrant testing methods are shown. The paper describes the methodology of repair the ladle with metal active gas welding, preheating process and standards nondestructive testing method.
Go to article

Abstract

A cast iron is gradient material. This means that depending on the cooling rate it is possible, at the same chemical composition and the physicochemical state of molten metal, to obtain material with a different structure. The connection between the wall thickness of the casting and the speed of its cooling expresses the casting module. Along with the module escalation a cooling rate of the casting is reducing what can cause changes of the microstructure and the increased tendency to the crystallization of distorted graphite forms. Inspections of experimental castings from nodular cast iron with different modules were conducted to the graphite form.
Go to article

Abstract

The publication presents the results of examination of selected carburizers used for cast iron production with respect to their electric resistance. Both the synthetic graphite carburizers and petroleum coke (petcoke) carburizers of various chemical composition were compared. The relationships between electrical resistance of tested carburizers and their quality were found. The graphite carburizers exhibited much better conductivity than the petcoke ones. Resistance characteristics were different for the different types of carburizers. The measurements were performed according to the authors’ own method based on recording the electric current flow through the compressed samples. The samples of the specified diameter were put under pressure of the gradually increased value (10, 20, 50, 60, and finally 70 bar), each time the corresponding value of electric resistance being measured with a gauge of high accuracy, equal to 0.1μΩ. The higher pressure values resulted in the lower values of resistance. The relation between both the thermal conductance and the electrical conductance (or the resistance) is well known and mentioned in the professional literature. The results were analysed and presented both in tabular and, additionally, in graphic form.
Go to article

Abstract

The investigations were inspired with the problem of cracking of steel castings during the production process. A single mechanism of decohesion – the intergranular one – occurs in the case of hot cracking, while a variety of structural factors is decisive for hot cracking initiation, depending on chemical composition of the cast steel. The low-carbon and low-alloyed steel castings crack due to the presence of the type II sulphides, the cause of cracking of the high-carbon tool cast steels is the net of secondary cementite and/or ledeburite precipitated along the boundaries of solidified grains. Also the brittle phosphor and carbide eutectics precipitated in the final stage solidification are responsible for cracking of castings made of Hadfield steel. The examination of mechanical properties at 1050°C revealed low or very low strength of high-carbon cast steels.
Go to article

Abstract

The paper presents selected granular ceramic materials available on the Polish market. Their characteristics have been determined in the aspect on application in the production of iron alloy-ceramic composite. The possibility of obtaining a composite layer by means of bulk grains in molds of plates were considered, which was the foundation for experimental molds to be used in service tests. On the basis of obtaining results was stated that the knowledge of the characteristics of bulk grains enables the calculation of their quantity necessary for the composite production. When using the bulk grains the thickness of the composite layer is restricted by the thermal relations (cooler) and the physical phenomena (buoyancy, metal static pressure). Increasing amount of grains above definite condition causes surface defects in the castings. Each casting, due to its weight, shape and place of composite layer production requires an individual approach, both at the stage of formation and that of calculation of the required quantity of ceramic grains.
Go to article

Abstract

The paper presents the results of simulation of alloy layer formation process on the model casting. The first aim of this study was to determine the influence of the location of the heat center on alloy layer’s thickness with the use of computer simulation. The second aim of this study was to predict the thickness of the layer. For changes of technological parameters, the distribution of temperature in the model casting and temperature changes in the characteristic points of the casting were found for established changes of technological parameters. Numerical calculations were performed using programs NovaFlow&Solid. The process of obtaining the alloy layer with good quality and proper thickness depends on: pouring temperature, time of premould hold at the temperature above 1300o C. The obtained results of simulation were loaded to authorial program Preforma 1.1 in order to determine the predicted thickness of the alloy casting
Go to article

Abstract

Contribution gives an overview of knowledge about the method of centrifugal casting with orientate on Tekcast system. Company Tekcast Industries has developed a device for centrifugal casting, extending the area of production of castings or prototyping of metal or plastic. Materials suitable for the centrifugal casting with flexible operating parameters may include non-ferrous metal alloy based on zinc or aluminum or non-metallic materials such as polyester resins, polyurethane resins, epoxy resins, waxes and the like. The casting process is particularly suitable for a wide range of commercial castings and decorative objects.
Go to article

Abstract

The paper presents a solidification sequence of graphite eutectic cells of A and D types, as well as globular and cementite eutectics. The morphology of eutectic cells in cast iron, the equations for their growth and the distances between the graphite precipitations in A and D eutectic types were analyzed. It is observed a critical eutectic growth rate at which one type of eutectic transformed into another. A mathematical formula was derived that combined the maximum degree of undercooling, the cooling rate of cast iron, eutectic cell count and the eutectic growth rate. One type of eutectic structure turned smoothly into the other at a particular transition rate, transformation temperature and transformational eutectic cell count. Inoculation of cast iron increased the number of eutectic cells with flake graphite and the graphite nodule count in ductile iron, while reducing the undercooling. An increase in intensity of inoculation caused a smooth transition from a cementite eutectic structure to a mixture of cementite and D type eutectic structure, then to a mixture of D and A types of eutectics up to the presence of only the A type of eutectic structure. Moreover, the mechanism of inoculation of cast iron was studied.
Go to article

Abstract

Characteristics of the microstructure of corrosion-resistant cast 24Cr-5Ni-2.5Mo duplex steel after introduction of 0.98, 1.67 and 4.3% Si were described. Based on the test results it has been found that silicon addition introduced to the corrosion-resistant cast two-phase duplex steel significantly reduces austenite content in the alloy matrix. Increasing silicon content in the test alloy to 4.3% has resulted, in addition to the elimination of austenite, also in the precipitation of Si-containing intermetallic phases at the grain boundaries and inside the grains. The precipitates were characterized by varying content of Cr and Mo, indicating the presence in the structure of more than one type of the brittle phase characteristic for this group of materials. The simulation using Thermo-Calc software has confirmed the presence of ferrite in all tested alloys. In the material containing 4.3% Si, the Cr and Si enriched precipitates, such as G phase and Cr3Si were additionally observed to occur.
Go to article

Abstract

The paper concerns the processes connected with the formation of chromium white cast iron microstructure. The influence of titanium and strontium on the alloy crystallization has been described using TDA method and EDS analysis. Conducted experiments allowed the determination of the selected additions influence on the microstructure of examined alloys. TDA analysis enabled indication of the characteristic temperatures of thermal effects for samples with strontium and titanium and the comparison of results for the reference sample without additions. The results of TDA test also included the analysis of the temperature first derivative values, which presented interesting differences as well. The scanning microscopy observation clearly indicated the difference between the effect of strontium and titanium on the alloy microstructure. The EDS analysis helped to identify the chemical composition of the evolving phases and confirmed the strontium presence in the eutectic. Experimental results allowed to draw reliable conclusions about the effect of applied additions on the crystallization and microstructure of chromium cast iron.
Go to article

Abstract

The paper presents the results of investigation into the technological possibility of making light-section castings of GX2CrNiMoN25-6-3 cast steel. For making castings with a wall thickness in the thinnest place as small as below 1 mm, the centrifugal casting technology was employed. The technology under consideration enables items with high surface quality to be obtained, while providing a reduced consumption of the charge materials and, as a result, a reduction in the costs of unit casting production.
Go to article

Abstract

The work determined the influence of aluminium in the amount from about 0.6% to about 8% on graphitization of cast iron with relatively high silicon content (3.4%-3.9%) and low manganese content (about 0.1%). The cast iron was spheroidized with cerium mixture and graphitized with ferrosilicon. It was found that the degree of graphitization increases with an increase in aluminium content in cast iron up to 2.8%, then decreases. Nodular and vermicular graphite precipitates were found after the applied treatment in cast iron containing aluminium in the amount from about 1.9% to about 8%. The Fe3AlCx carbides, increasing brittleness and deteriorating the machinability of cast iron, were not found in cast iron containing up to about 6.8% Al. These carbides were revealed only in cast iron containing about 8% Al.
Go to article

This page uses 'cookies'. Learn more