Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 5
Wyników na stronie: 25 50 75
Sortuj wg:
Słowa kluczowe Slag Copper recovery Recycling

Abstrakt

There are presents the internal recycling in anode furnace, in addition to mainly blister copper and converter copper. During the process there arise the two types of semi-finished products intended for further pyro metallurgical processing: anode copper and anode slag. The stream of liquid blister copper enters into the anode furnace treatment, in which the losses are recovered, e.g. copper, resulting from oxidation and reduction of sulfides, oxides and the oxidation of metallic compounds of lead, zinc and iron. In the liquid phase there are still gaseous states, which gives the inverse relationship relating to the solid phase, wherein the gases found an outlet in waste gas or steam. The results of chemical analysis apparently differ from each other, because crystallite placement, the matrix structure and the presence of other phases and earth elements are not compared, which can be regained in the process of electrorefining. One should not interpret negatively smaller proportion of copper in the alloy, since during the later part of the production more elements can be obtained, for example from sludge, such as platinum group metals and lanthanides. According to the research the quality of blister copper, to a large extent, present in the alloy phase to many other elements, which can be recovered.
Przejdź do artykułu

Abstrakt

Copper slag is a by-product obtained during smelting and refining of copper. Copper smelting slag typically contains about 1 wt.% copper and 40 wt.% iron depending upon the initial ore quality and the furnace type. Main components of copper slag are iron oxide and silica. These exist in copper slag mainly in the form of fayalite (2FeO ·SiO2). This study was intended to recover pig iron from the copper smelting slag by reduction smelting method. At the reaction temperature of below 1400°С the whole copper smelting slag was not smelted, and some agglomerated, showing a mass in a sponge form. The recovery behavior of pig iron from copper smelting slag increases with increasing smelting temperature and duration. The recovery rate of pig iron varied greatly depending on the reaction temperature.
Przejdź do artykułu

Abstrakt

The scope of work included the launch of the process of refining slag suspension in a gas oven using a variety of technological additives. After the refining process (in the context of copper recovery), an assessment of the effect of selected reagents at the level of the slag refining suspension (in terms of copper recovery). Method sieve separated from the slag waste fraction of metallic, iron - silicate and powdery waste. Comparison of these photographs macroscopic allowed us to evaluate the most advantageous method of separating metallic fraction from the slag. After applying the sample A (with KF2 + NaCl) we note that in some parts of the slag are still large amounts of metallic fraction. The fraction of slag in a large majority of the elements has the same size of 1 mm, and a larger portion of the slag, the size of which is from 2 to 6 mm. Definitely the best way is to remove the copper by means of the component B (with NaCl ) and D (with KF2 ). However, as a result of removing the copper by means of component C (with CaO) were also obtained a relatively large number of tiny droplets of copper, which was problematic during segregation. In both cases we were able to separate the two fractions in a fast and simple manner.
Przejdź do artykułu

Abstrakt

The post-processing slags containing about 0.8 wt.% of copper were subjected to the treatment of a complex reagent. The chemical composition of the complex reagent has been elaborated and patented in frame of the Grant No. PBS3/A5/45/2015. The slags had an industrial origin and were delivered by the Smelter and Refinery Plant, Głogów, as a product of the direct-to-blister technology performed in the flash furnace assisted by the arc furnace. An agglomeration of copper droplets suspended in the liquid slag, their coagulation, and deposition on the bottom of furnace were observed after the treatment this post-processing slag by the mentioned reagent. The treatment of the post-processing slags by the complex reagent was performed in the arc furnace equipped with some additional electrodes situated at the furnace bottom (additional, in comparison with the arc furnace usually applied in the Smelter and Refinery Plant, Głogów). The behaviour of the copper droplets in the liquid slag within the competition between buoyancy force and gravity was studied from the viewpoint of the required deposition of coagulated copper droplets. The applied complex reagent improves sufficiently the surface free energy of the copper droplets. In the result, the mechanical equilibrium between coagulated copper droplets and surrounding liquid slag is properly modified. Eventually, sufficiently large copper droplets are subjected to a settlement on the furnace bottom according to the requirements. The agglomeration and coagulation of the copper droplets were significantly improved by an optimized tilting of the upper electrodes and even by their rotation. Moreover, the settlement was substantially facilitated and improved by the employment of both upper and lower system of electrodes with the simultaneous substitution of the variable current by the direct current.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji