Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 4
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

Classification techniques have been widely used in different remote sensing applications and correct classification of mixed pixels is a tedious task. Traditional approaches adopt various statistical parameters, however does not facilitate effective visualisation. Data mining tools are proving very helpful in the classification process. We propose a visual mining based frame work for accuracy assessment of classification techniques using open source tools such as WEKA and PREFUSE. These tools in integration can provide an efficient approach for getting information about improvements in the classification accuracy and helps in refining training data set. We have illustrated framework for investigating the effects of various resampling methods on classification accuracy and found that bilinear (BL) is best suited for preserving radiometric characteristics. We have also investigated the optimal number of folds required for effective analysis of LISS-IV images.
Przejdź do artykułu

Abstrakt

This article presents the methodology for exploratory analysis of data from microstructural studies of compacted graphite iron to gain knowledge about the factors favouring the formation of ausferrite. The studies led to the development of rules to evaluate the content of ausferrite based on the chemical composition. Data mining methods have been used to generate regression models such as boosted trees, random forest, and piecewise regression models. The development of a stepwise regression modelling process on the iteratively limited sets enabled, on the one hand, the improvement of forecasting precision and, on the other, acquisition of deeper knowledge about the ausferrite formation. Repeated examination of the significance of the effect of various factors in different regression models has allowed identification of the most important variables influencing the ausferrite content in different ranges of the parameters variability.
Przejdź do artykułu

Abstrakt

The paper presents an analysis of SPC (Statistical Process Control) procedures usability in foundry engineering. The authors pay particular attention to the processes complexity and necessity of correct preparation of data acquisition procedures. Integration of SPC systems with existing IT solutions in area of aiding and assistance during the manufacturing process is important. For each particular foundry, methodology of selective SPC application needs to prepare for supervision and control of stability of manufacturing conditions, regarding specificity of data in particular “branches” of foundry production (Sands, Pouring, Metallurgy, Quality).
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji