Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

This paper outlines issues associated with gas-shielded braze welding of CU-ETP copper with austenitic steel X5CrNi18-10 (1.4301) using a consumable electrode. The possibilities for producing joints of this type using innovative low-energy welding methods are discussed. The paper provides an overview of the results of metallographic and mechanical (static shear test, microhardness) tests for braze welded joints made on an automated station using the Cold Metal Transfer (CMT) method. Significant differences in the structure and mechanical properties are indicated, resulting from the joint configuration and the type of shielding gas (argon, helium).
Go to article

Abstract

The microstructures and mechanical properties of T92 martensitic steel/Super304 austenitic steel weld joints with three welding consumables were investigated. Three types of welding materials ERNiCr-3, ERNiCrCoMo-1and T-304H were utilized to obtain dissimilar welds by using gas tungsten arc weld (GTAW). The results show that heat affect zone (HAZ) of T92 steel consists of coarse-grained and fine-grained tempered martensites. The microstructures of joints produced from ERNiCrCoMo-1 consist of equiaxed dendrite and columnar dendrite grains, which are more complicated than that of ERNiCr-3. In the tensile tests, joints constructed from ERNiCrCoMo-1 and T-304H met the ASME standard. The highest fracture energy was observed in specimens with the welding material ERNiCrCoMo-1. Ni content in weld seam of ERNiCrCoMo-1 was highest, which was above 40%. In conclusion, the nickel alloy ERNiCrCoMo-1 was the most suitable welding material for joints produced from T92 martensitic steel/Super304 austenitic steel.
Go to article

This page uses 'cookies'. Learn more