Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 19
items per page: 25 50 75
Sort by:

Abstract

Measuring cosmic distances is one of the most important, fascinating and difficult challenges facing astronomers today. The objective is not just to identify the distances between objects in space – such distances are also key to finding out how our Universe is structured and how it evolves. They also evidence the amount of energy emitted by objects and makes it possible to determine their nature.
Go to article

Abstract

A trellis coded 4-ary Pulse Amplitude Modulation (4-PAM) is presented, where the encoding algorithm is derived from Distance Preserving Mapping (DPM) algorithm. In this work, we modify the DPM algorithm for 4-PAM and obtain a new construction for mapping binary sequences to permutation sequences, where the permutation sequences are obtained by permuting symbols of a 4-PAM constellation. The resulting codebook of permutation sequences formed this way are termed mappings. We also present several metrics for assessing the performance of the mappings from our construction, and we show that a metric called the Sum of Product of Distances (SOPD) is the best metric to use when judging the performance of the mappings. Finally, performance results are presented, where the mappings from our construction are compared against each other and also against the conventional mappings in the literature.
Go to article

Abstract

The paper demonstrates that blind people localize sounds more accurately than sighted people by using monaural and/or binaural cues. In the experiment, blind people participated in two tests; the first one took place in the laboratory and the second one in the real environment under different noise conditions. A simple click sound was employed and processed with non-individual head related transfer functions. The sounds were delivered by a system with a maximum azimuth of 32° to the left side and 32° to the right side of the participant’s head at a distance ranging from 0.3 m up to 5 m. The present paper describes the experimental methods and results of virtual sound localization by blind people through the use of a simple electronic travel aid based on an infrared laser pulse and the time of flight distance measurement principle. The lack of vision is often compensated by other perceptual abilities, such as the tactile or hearing ability. The results show that blind people easily perceive and localize binaural sounds and assimilate them with sounds from the environment.
Go to article

Abstract

The head-related transfer function (HRTF) is dependent on the position of the sound source (both direction and distance) and is also affected by individual anatomical parameters. Individualized HRTFs have been shown to affect the perception of sound direction, but have not been considered in distance perception. This work aims to discover, by means of psychoacoustic experiments for a virtual reproduction system through a pair of in-ear headphones, the effect of individualized HRTF on auditory distance perception for a nearby sound source. The individualized HRTFs of six subjects and the non-individualized HRTFs of a mannequin at seven distances between 0.2 and 1.0 m and five lateral azimuths between 45X and 135X in the horizontal plane were processed with white noise to generate binaural signals. Further, the individualized and non-individualized HRTFs were used in the auditory distance perception experiments. Results of distance perception show that the variance of distance perception results among subjects is significant, the reason could be the stimuli are lack of dynamic cue and early reflections, or the auditory difference of distance perception among subjects. However, via the analyses of mean slope of perceptual distance and correlation between the perceptual and real distance, we find that the individualized HRTF cue has insignificant influence on distance perception.
Go to article

Abstract

A geodesic survey of an existing route requires one to determine the approximation curve by means of optimization using the total least squares method (TLSM). The objective function of the LSM was found to be a square of the Mahalanobis distance in the adjustment field ν . In approximation tasks, the Mahalanobis distance is the distance from a survey point to the desired curve. In the case of linear regression, this distance is codirectional with a coordinate axis; in orthogonal regression, it is codirectional with the normal line to the curve. Accepting the Mahalanobis distance from the survey point as a quasi-observation allows us to conduct adjustment using a numerically exact parametric procedure. Analysis of the potential application of splines under the NURBS (non-uniform rational B-spline) industrial standard with respect to route approximation has identified two issues: a lack of the value of the localizing parameter for a given survey point and the use of vector parameters that define the shape of the curve. The value of the localizing parameter was determined by projecting the survey point onto the curve. This projection, together with the aforementioned Mahalanobis distance, splits the position vector of the curve into two orthogonal constituents within the local coordinate system of the curve. A similar system corresponds to points that form the control polygonal chain and allows us to find their position with the help of a scalar variable that determines the shape of the curve by moving a knot toward the normal line.
Go to article

Abstract

A novel laser diode based length measuring interferometer for scientific and industrial metrology is presented. Wavelength the stabilization system applied in the interferometer is based on the optical wedge interferometer. Main components of the interferometer such as: laser diode stabilization assembly, photodetection system, measuring software, air parameters compensator and base optical assemblies are described. Metrological properties of the device such as resolution, measuring range, repeatability and accuracy are characterized.
Go to article

Abstract

Stealth is a frequent requirement in military applications and involves the use of devices whose signals are difficult to intercept or identify by the enemy. The silent sonar concept was studied and developed at the Department of Marine Electronic Systems of the Gdansk University of Technology. The work included a detailed theoretical analysis, computer simulations and some experimental research. The results of the theoretical analysis and computer simulation suggested that target detection and positioning accuracy deteriorate as the speed of the target increases, a consequence of the Doppler effect. As a result, more research and measurements had to be conducted to verify the initial findings. To ensure that the results can be compared with those from the experimental silent sonar model, the target's actual position and speed had to be precisely controlled. The article presents the measurement results of a silent sonar model looking at its detection, range resolution and problems of incorrect positioning of moving targets as a consequence of the Doppler effect. The results were compared with those from the theoretical studies and computer simulations.
Go to article

Abstract

Directional solidification of ledeburite was realised out using a Bridgman’s device. The growth rate for movement sample v=83.3 μm/s was used. In one sample the solidification front was freezing. The value of temperature gradient in liquid at the solidification front was determined. Interfacial distance λ on the samples was measured with NIS-Elements application for image analysis.
Go to article

Abstract

Video walls are useful to display large size video content. Empowered video walls combine display functionality with computing power. Such video walls can display large scientific visualizations. If they can also display high-resolution video streamed over a network, they could enable distance collaboration over scientific data. We proposed several methods of network streaming of highresolution video content to a major type of empowered video walls, which is the SAGE2 system. For all methods, we evaluated their performance and discussed their scalability and properties. The results should be applicable to other web-based empowered video walls as well.
Go to article

Abstract

This article focuses on paralogical figures (amphibology, equivocation, hypallage and syllepsis) in the poems of Jan Zych. Paralogicisms are phrases in which the combination of logical and syntactical form produces an irresolvable semantic conundrum. The article is divided into three parts, each dealing with one aspect of Zych’s handling of the opposition of distance and proximity: air metaphors expressive of the channel of poetic speech; communication by post (letters); and images of the labyrinth. The paralogical figures are discussed in terms of their function as textual building-blocks, a mark of the author’s subjectivity, and an invitation for performative reading. In this way, Zych’s poems, in particular Labirynty (The Labyrinths) are reconstituted as literary performances, analogous to the labyrinthine prose of J. L. Borges and Octavio Paz.
Go to article

Abstract

Various sectors of the economy such as transport and renewable energy have shown great interest in sea bed models. The required measurements are usually carried out by ship-based echo sounding, but this method is quite expensive. A relatively new alternative is data obtained by airborne lidar bathymetry. This study investigates the accuracy of these data, which was obtained in the context of the project ‘Investigation on the use of airborne laser bathymetry in hydrographic surveying’. A comparison to multi-beam echo sounding data shows only small differences in the depths values of the data sets. The IHO requirements of the total horizontal and vertical uncertainty for laser data are met. The second goal of this paper is to compare three spatial interpolation methods, namely Inverse Distance Weighting (IDW), Delaunay Triangulation (TIN), and supervised Artificial Neural Networks (ANN), for the generation of sea bed models. The focus of our investigation is on the amount of required sampling points. This is analyzed by manually reducing the data sets. We found that the three techniques have a similar performance almost independently of the amount of sampling data in our test area. However, ANN are more stable when using a very small subset of points.
Go to article

Abstract

A robust Kalman filter improved with IGG (Institute of Geodesy and Geophysics) scheme is proposed and used to resist the harmful effect of gross error from GPS observation in PPP/INS (precise point positioning/inertial navigation system) tightly coupled positioning. A new robust filter factor is constructed as a three-section function to increase the computational efficiency based on the IGG principle. The results of simulation analysis show that the robust Kalman filter with IGG scheme is able to reduce the filter iteration number and increase efficiency. The effectiveness of new robust filter is demonstrated by a real experiment. The results support our conclusion that the improved robust Kalman filter with IGG scheme used in PPP/INS tightly coupled positioning is able to remove the ill effect of gross error in GPS pseudorange observation. It clearly illustrates that the improved robust Kalman filter is very effective, and all simulated gross errors added to GPS pseudorange observation are successfully detected and modified.
Go to article

Abstract

The secretiveness of sonar operation can be achieved by using continuous frequency-modulated sounding signals with reduced power and significantly prolonged repeat time. The application of matched filtration in the sonar receiver provides optimal conditions for detection against the background of white noise and reverberation, and a very good resolution of distance measurements of motionless targets. The article shows that target movement causes large range measurement errors when linear and hyperbolic frequency modulations are used. The formulas for the calculation of these errors are given. It is shown that for signals with linear frequency modulation the range resolution and detection conditions deteriorate. The use of hyperbolic frequency modulation largely eliminates these adverse effects.
Go to article

Abstract

Independent Component Analysis (ICA) can be used for single channel audio separation, if a mixed signal is transformed into time-frequency domain and the resulting matrix of magnitude coefficients is processed by ICA. Previous works used only frequency (spectral) vectors and Kullback-Leibler distance measure for this task. New decomposition bases are proposed: time vectors and time-frequency components. The applicability of several different measures of distance of components are analysed. An algorithm for clustering of components is presented. It was tested on mixes of two and three sounds. The perceptual quality of separation obtained with the measures of distance proposed was evaluated by listening tests, indicating "beta" and "correlation" measures as the most appropriate. The "Euclidean" distance is shown to be appropriate for sounds with varying amplitudes. The perceptual effect of the amount of variance used was also evaluated.
Go to article

Abstract

This paper discusses the concept of the reverberation radius, also known as critical distance, in rooms with non-uniformly distributed sound absorption. The reverberation radius is the distance from a sound source at which the direct sound level equals the reflected sound level. The currently used formulas to calculate the reverberation radius have been derived by the classic theories of Sabine or Eyring. However, these theories are only valid in perfectly diffused sound fields; thus, only when the energy density is constant throughout a room. Nevertheless, the generally used formulas for the reverberation radius have been used in any circumstance. Starting from theories for determining the reverberation time in non- diffuse sound fields, this paper firstly proposes a new formula to calculate the reverberation radius in rooms with non-uniformly distributed sound absorption. Then, a comparison between the classic formulas and the new one is performed in some rectangular rooms with non-uniformly distributed sound absorption. Finally, this paper introduces a new interpretation of the reverberation radius in non-diffuse sound fields. According to this interpretation, the time corresponding to the sound to travel a reverberation radius should be assumed as the lower limit of integration of the diffuse sound energy
Go to article

Abstract

The article is devoted to the problem of voice signals recognition means introduction in the system of distance learning. The results of the conducted research determine the prospects of neural network means of phoneme recognition. It is also shown that the main difficulties of creation of the neural network model, intended for recognition of phonemes in the system of distance learning, are connected with the uncertain duration of a phoneme-like element. Due to this reason for recognition of phonemes, it is impossible to use the most effective type of neural network model on the basis of a multilayered perceptron, at which the number of input parameters is a fixed value. To mitigate this shortcoming, the procedure, allowing to transform the non-stationary digitized voice signal to the fixed quantity of mel-cepstral coefficients, which are the basis for calculation of input parameters of the neural network model, is developed. In contrast to the known ones, the possibility of linear scaling of phoneme-like elements is available in the procedure. The number of computer experiments confirmed expediency of the fact that the use of the offered coding procedure of input parameters provides the acceptable accuracy of neural network recognition of phonemes under near-natural conditions of the distance learning system. Moreover, the prospects of further research in the field of development of neural network means of phoneme recognition of a voice signal in the system of distance learning is connected with an increase in admissible noise level. Besides, the adaptation of the offered procedure to various natural languages, as well as to other applied tasks, for instance, a problem of biometric authentication in the banking sector, is also of great interest.
Go to article

Abstract

The near net shaped manufacturing ability of squeeze casting process requiresto set the process variable combinations at their optimal levels to obtain both aesthetic appearance and internal soundness of the cast parts. The aesthetic and internal soundness of cast parts deal with surface roughness and tensile strength those can readily put the part in service without the requirement of costly secondary manufacturing processes (like polishing, shot blasting, plating, hear treatment etc.). It is difficult to determine the levels of the process variable (that is, pressure duration, squeeze pressure, pouring temperature and die temperature) combinations for extreme values of the responses (that is, surface roughness, yield strength and ultimate tensile strength) due to conflicting requirements. In the present manuscript, three population based search and optimization methods, namely genetic algorithm (GA), particle swarm optimization (PSO) and multi-objective particle swarm optimization based on crowding distance (MOPSO-CD) methods have been used to optimize multiple outputs simultaneously. Further, validation test has been conducted for the optimal casting conditions suggested by GA, PSO and MOPSO-CD. The results showed that PSO outperformed GA with regard to computation time.
Go to article

Abstract

The use of quantitative methods, including stochastic and exploratory techniques in environmental studies does not seem to be sufficient in practical aspects. There is no comprehensive analytical system dedicated to this issue, as well as research regarding this subject. The aim of this study is to present the Eco Data Miner system, its idea, construction and implementation possibility to the existing environmental information systems. The methodological emphasis was placed on the one-dimensional data quality assessment issue in terms of using the proposed QAAH1 method - using harmonic model and robust estimators beside the classical tests of outlier values with their iterative expansions. The results received demonstrate both the complementarity of proposed classical methods solution as well as the fact that they allow for extending the range of applications significantly. The practical usefulness is also highly significant due to the high effectiveness and numerical efficiency as well as simplicity of using this new tool.
Go to article

This page uses 'cookies'. Learn more