The effect of laser, as a heat source, on a one-dimensional finite body was studied in this paper. The Cattaneo-Vernotte non-Fourier heat conduction model was used for thermal analysis. The thermal conductivity was assumed temperature-dependent which resulted in a non-linear equation. The obtained equations were solved using the approximate-analytical Adomian Decomposition Method (ADM). It was concluded that the non-linear analysis is important in non-Fourier heat conduction problems. Significant differences were observed between the Fourier and non-Fourier solutions which stresses the importance of non-Fourier solutions in the similar problems.
The paper presents a research program carried out to improve understanding of the fluid dynamics mechanisms that lead to rotating stall in the axial flow low speed compressor stage. The stalling behavior of this compressor stage was studied by measuring unsteady casing pressure by means of a circumferentially and axially spaced array of high frequency pressure transducers. Another probe used was a disc static pressure probe, with the pressure transducer, for in-flow and out-flow measurements along the blade span. It was expected that understanding of the fluid dynamics will facilitate at least two important tasks. The first was to accurately predict of when and how a particular compressor would stall. The second was to control, delay, or eventually suppress the rotating stall and surge. In consequence, one could extend the useful operating range of the axial compressor. Another motivation for the research was to compare the results from the three applied analysis techniques by using a single stall inception event. The first one was a simple visual inspection of the traces, which brought about a very satisfactory effect. The second one was application of spatial Fourier decomposition to the analysis of stall inception data, and the third method of analysis consisted in application of wavelet filtering in order to better understand the physical mechanisms which lead to rotating stall. It was shown that each of these techniques would provide different information about compressor stall behavior, and each method had unique advantages and limitations.
The cuboidal room acoustics field is modelled with the Fourier method. A combination of uniform, impedance boundary conditions imposed on walls is assumed, and they are expressed by absorption coefficient values. The absorption coefficient, in the full range of its values in the discrete form, is considered. With above assumptions, the formula for a rough estimation of the cuboidal room acoustics is derived. This approximate formula expresses the mean sound pressure level as a function of the absorption coefficient, frequency, and volume of the room separately. It is derived based on the least-squares approximation theory and it is a novelty in the cuboidal room acoustics. Theoretical considerations are illustrated via numerical calculations performed for the 3D acoustic problem. Quantitative results received with the help of the approximate formula may be a point of reference to the numerical calculations.
Modern production technology requires new ways of surface examination and a special kind of surface profile parameters. Industrial quality inspection needs to be fast, reliable and inexpensive. In this paper it is shown how stochastic surface examination and its proper parameters could be a solution for many industrial problems not necessarily related with smoothing out a manufactured surface. Burnishing is a modern technology widely used in aircraft and automotive industries to the products as well as to process tools. It gives to the machined surface high smoothness, and good fatigue and wear resistance. Every burnished material behaves in a different manner. Process conditions strongly influence the final properties of any specific product. Optimum burnishing conditions should be preserved for any manufactured product. In this paper we deal with samples made of conventional tool steel – Sverker 21 (X153CrMoV12) and powder metallurgy (P/M) tool steel – Vanadis 6. Complete investigations of product properties are impossible to perform (because of constraints related to their cost, time, or lack of suitable equipment). Looking for a global, all-embracing quality indicator it was found that the correlation function and the frequency analysis of burnished surface give useful information for controlling the manufacturing process and evaluating the product quality. We propose three new indicators of burnishing surface quality. Their properties and usefulness are verified with the laboratory measurement of material samples made of the two mentioned kinds of tool steel.
It is assumed in the paper that the signals in the enclosure in a transient period are similar to a noise induced by vehicles, tracks, cars, etc. passing by. The components of such signals usually points out specific dynamic processes running during the observation or measurements. In order to choose the best method of analysis of these phenomena, an acoustic field in a closed space with a sound source inside is created. Acoustic modes of this space influence the sound field. Analytically, the modal analyses describe the above mentioned phenomena. The experimental measurements were conducted in the room that might comprise the closed space with known boundary conditions and the sound source Brüel & Kjær Omni-directional type 4292 inside. To record sound signals before the field's steady state was reached, the microphone type 4349 and the 4-channel frontend 3590 had been used. The obtained signals have been analysed by using two approaches, i.e. Fourier and the wavelet analysis, with the emphasis on their efficiency and the capability to recognise important details of the signal. The results obtained for the enclosure might lead to the formulation of a methodology for an extended investigation of a rail track or vehicles dynamics.
A traditional frequency analysis is not appropriate for observation of properties of non-stationary signals. This stems from the fact that the time resolution is not defined in the Fourier spectrum. Thus, there is a need for methods implementing joint time-frequency analysis (t/f) algorithms. Practical aspects of some representative methods of time-frequency analysis, including Short Time Fourier Transform, Gabor Transform, Wigner-Ville Transform and Cone-Shaped Transform are described in this paper. Unfortunately, there is no correlation between the width of the time-frequency window and its frequency content in the t/f analysis. This property is not valid in the case of a wavelet transform. A wavelet is a wave-like oscillation, which forms its own “wavelet window”. Compression of the wavelet narrows the window, and vice versa. Individual wavelet functions are well localized in time and simultaneously in scale (the equivalent of frequency). The wavelet analysis owes its effectiveness to the pyramid algorithm described by Mallat, which enables fast decomposition of a signal into wavelet components.
The main objective of this paper is to produce an applications-oriented review covering infrared techniques and devices. At the beginning infrared systems fundamentals are presented with emphasis on thermal emission, scene radiation and contrast, cooling techniques, and optics. Special attention is focused on night vision and thermal imaging concepts. Next section concentrates shortly on selected infrared systems and is arranged in order to increase complexity; from image intensifier systems, thermal imaging systems, to space-based systems. In this section are also described active and passive smart weapon seekers. Finally, other important infrared techniques and devices are shortly described, among them being: non-contact thermometers, radiometers, LIDAR, and infrared gas sensors.