Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 9
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

The paper presents the issue of synthetic cast iron production in the electric induction furnace exclusively on the steel scrap base. Silicon carbide and synthetic graphite were used as carburizers. The carburizers were introduced with solid charge or added on the liquid metal surface. The chemical analysis of the produced cast iron, the carburization efficiency and microstructure features were presented in the paper. It was stated that ferrosilicon can be replaced by silicon carbide during the synthetic cast iron melting process. However, due to its chemical composition (30% C and 70% Si) which causes significant silicon content in iron increase, the carbon deficit can be partly compensated by the carburizer introduction. Moreover it was shown that the best carbon and silicon assimilation rate is obtained where the silicon carbide is being introduced together with solid charge. When it is thrown onto liquid alloy surface the efficiency of the process is almost two times less and the melting process lasts dozen minutes long. The microstructure of the cast iron produced with the silicon carbide shows more bulky graphite flakes than inside the microstructure of cast iron produced on the pig iron base.
Przejdź do artykułu

Abstrakt

In this paper an attempt to determine the relationship between the electrical resistivity and the tensile strength and hardness of cast iron of carbon equivalent in the range from 3.93% to 4.48%. Tests were performed on the gray cast iron for 12 different melts with different chemical composition. From one melt poured 6 samples. Based on the study of mechanical and electro-resistive determined variation characteristics of tensile strength, hardness and resistivity as a function of the carbon equivalent. Then, regression equations were developed as power functions describing the relationship between the resistivity of castings and their tensile strength and hardness. It was found a high level of regression equations to measuring points, particularly with regard to the relationship Rm=f(ρ). The obtained preliminary results indicate the possibility of application of the method of the resistance to rapid diagnostic casts on the production line, when we are dealing with repeatable production, in this case non variable geometry of the product for which it has been determinated before a regression equation.
Przejdź do artykułu

Abstrakt

Grey cast iron belongs to materials for casting production, which have wide application for different industry branches. Wide spectrum of properties of these materials is given by the structure of base metal matrix, which can be influenced with heat treatment. Processes of annealing can be applied for grey cast iron without problems. During heat treatment processes, where higher cooling rates are used, the thermal and structural strains become important. Usage and conditions of such heat treatment for grey cast iron castings of common production are the subject of evaluation of this article.
Przejdź do artykułu

Abstrakt

The paper presents results of metallographic examination of faults occurring in the course of founding thin-walled cast-iron castings in furan resin sand molds. A non-conformance of the scab type was Observed on surface of the casting as well as sand buckles and cold shots. Studied the chemical composition by means of a scanning electron microscope in a region of casting defects: microanalysis point and microanalysis surface. Around the observed defects discloses high concentration of oxides of iron, manganese and silicon. A computer simulation of the casting process has been carried out with the objective to establish the cause of occurrence of cold shots on casting surface. The simulation was carried out with the use of NovaFlow & Solid program. We analyzed the flowing metal in the mold cavity. The main reason for the occurrence of casting defects on the surface of the casting was gating system, which caused turbulent flow of metal with a distinctive splash stream of liquid alloy.
Przejdź do artykułu

Abstrakt

The paper presents a method of producing a grey cast iron casting locally reinforced with a titanium insert printed using SLM method (Selective Laser Melting). This article attempts to examine the impact of the selected geometry of titanium spatial insert on the surface layer formation on grey cast iron. The scope of the research focuses on metallographic examination - observation and analysis of the structure of the reinforced surface layer on a light and scanning microscope and a hardness measurement of the titanium layer area. Based on the obtained results, it was concluded that the reaction between titanium insert and metal (grey cast iron) locally develops numerous carbides precipitation (mainly TiC particles), which increases the hardness of the reinforced surface layer and local strengthening of the material. The ratio between the thickness of the support part (grey cast iron) and the working part (titanium insert) affects the resulting layers connection structure. The properties of the obtained reinforced surface layer depend mainly on the geometry of the insert (primarily on the internal dimensions of the connector) and the volume of the casting affecting the re-melting of the insert. A more concentrated structure of carbides precipitation occurs in castings with a full connector insert.
Przejdź do artykułu

Abstrakt

The paper presents an innovative method of creating the layered castings. The innovation relies on application the 3D printing insert obtaining in SLM (selective laser melting) method. This type of scaffold insert made from pure Ti powder, was placed into mould cavity directly before pouring by grey cast iron. In result of used method was obtained grey cast iron casting with surface layer reinforced by titanium carbides. In range of studies were carried out metallographic researches using light microscope and scanning electron microscope, microhardness measurements and abrasive wear resistance. On the basis of obtaining results was stated that there is a possibility of reinforcing surface layer of the grey cast iron casting by using 3D printing scaffold insert in the method of mould cavity preparation. Moreover there was a local increase in hardness and abrasive wear resistance in spite of the precipitation of titanium carbides in surface layer of grey cast iron. While the usable properties of composite surface layer obtained in result of use of the method presented in the paper, strongly depend of dimensions of scaffold insert, mainly parameters Re and Ri.
Przejdź do artykułu

Abstrakt

The modification is a widespread method of improving the strength properties of cast iron. The impact in terms of increasing amounts of eutectic grains has been thoroughly studied while the issue of the impact on the mechanical properties of primary austenite grains has not been studied in depth yet. The paper presents the study of both aspects. The methodology was to conduct the melting cast iron with flake graphite, then modifying the alloy by two sets of modifiers: the commercial modifier, and a mixture of iron powder with a commercial inoculant. The DAAS test was carried out to identify the primary austenite grains. The degree of supercooling was determined and the UTS test was performed as well. Additionally carried out the metallographic specimen allowing for counting grains. It can be concluded that the introduction of the iron powder significantly improved the number of austenite primary grains which resulted in an increase in tensile strength UTS.
Przejdź do artykułu

Abstrakt

The paper is a presentation of a study on issues concerning degradation of protective paint coat having an adverse impact on aesthetic qualities of thin-walled cast-iron castings fabricated in furan resin sand. Microscopic examination and microanalyses of chemistry indicated that under the coat of paint covering the surface of a thin-walled casting, layers of oxides could be found presence of which can be most probably attributed to careless cleaning of the casting surface before the paint application process, as well as corrosion pits evidencing existence of damp residues under the paint layers contributing to creation of corrosion micro-cells
Przejdź do artykułu

Abstrakt

The aim of the paper was an attempt at applying the time-series analysis to the control of the melting process of grey cast iron in production conditions. The production data were collected in one of Polish foundries in the form of spectrometer printouts. The quality of the alloy was controlled by its chemical composition in about 0.5 hour time intervals. The procedure of preparation of the industrial data is presented, including OCR-based method of transformation to the electronic numerical format as well as generation of records related to particular weekdays. The computations for time-series analysis were made using the author’s own software having a wide range of capabilities, including detection of important periodicity in data as well as regression modeling of the residual data, i.e. the values obtained after subtraction of general trend, trend of variability amplitude and the periodical component. The most interesting results of the analysis include: significant 2-measurements periodicity of percentages of all components, significance 7-day periodicity of silicon content measured at the end of a day and the relatively good prediction accuracy obtained without modeling of residual data for various types of expected values. Some practical conclusions have been formulated, related to possible improvements in the melting process control procedures as well as more general tips concerning applications of time-series analysis in foundry production.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji