Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

The paper addresses the problem of experimental studies of miniature tilt sensors based on low-range accelerometers belonging to Microelectromechanical Systems (MEMS). A custom computer controlled test rig is proposed, whose kinematics allows an arbitrary tilt angle to be applied (i.e. its two components: pitch and roll over the full angular range). The related geometrical relationships are presented along with the respective uncertainties resulting from their application. Metrological features of the test rig are carefully evaluated and briefly discussed. Accuracy of the test rig is expressed in terms of the respective uncertainties, as recommended by ISO; its scope of application as well as the related limitations are indicated. Even though the test rig is mostly composed of standard devices, like rotation stages and incremental angle encoder, its performance can be compared with specialized certified machines that are very expensive. Exemplary results of experimental studies of MEMS accelerometers realized by means of the test rig are presented and briefly discussed. Few ways of improving performance of the test rig are proposed.
Go to article

Abstract

This paper gives a detailed electroacoustic study of a new generation of monolithic CMOS micromachined electrodynamic microphone, made with standard CMOS technology. The monolithic integration of the mechanical sensor with the electronics using a standard CMOS process is respected in the design, which presents the advantage of being inexpensive while having satisfactory performance. The MEMS microphone structure consists mainly of two planar inductors which occupy separate regions on substrate. One inductor is fixed; the other can exercise out-off plane movement. Firstly, we detail the process flow, which is used to fabricate our monolithic microphone. Subsequently, using the analogy between the three different physical domains, a detailed electro-mechanical-acoustic analogical analysis has been performed in order to model both frequency response and sensitivity of the microphone. Finally, we show that the theoretical microphone sensitivity is maximal for a constant vertical position of the diaphragm relative to the substrate, which means the distance between the outer and the inner inductor. The pressure sensitivity, which is found to be of the order of a few tens of μV/Pa, is flat within a bandwidth from 50 Hz to 5 kHz.
Go to article

This page uses 'cookies'. Learn more