Search results

Filters

  • Journals
  • Date

Search results

Number of results: 5
items per page: 25 50 75
Sort by:

Abstract

Progress in UV treatment applications requires new compact and sensor constructions. In the paper a hybrid (organic-inorganic) rare-earth-based polymeric UV sensor construction is proposed. The efficient luminescence of poly(methyl) methacrylate (PMMA) matrix doped by europium was used for testing the optical sensor (optrode) construction. The europium complex assures effective luminescence in the visible range with well determined multi-peak spectrum emission enabling construction of the optrode. The fabricated UV optical fibre sensor was used for determination of Nd:YAG laser intensity measurements at the third harmonic (355 nm) in the radiation power range 5.0-34.0 mW. The multi-peak luminescence spectrum was used for optimization of the measurement formula. The composition of luminescent peak intensity enables to increase the slope of sensitivity up to −2.8 mW-1. The obtained results and advantages of the optical fibre construction enable to apply it in numerous UV detection systems.
Go to article

Abstract

Antarctic plants experience UV−B stress and for their survival they have been showing various adaptive strategies. The first line of defence is to screen UV−B radiation before it reaches the cell, then to minimize damage within the cells through other protective strategies, and finally to repair damage once it has occurred. A fifteen days experiment was designed to study lichen: Dermatocarpon sp. and Acarospora gwynnii under natural UV and below UV filter frames in the Indian Antarctic Station Maitri region of Schirmacher Oasis, East Antarctica. Changes in UV absorbing compounds, total phenolics, total carotenoids and chlorophyll content were studied. The change in total phenolics and total carotenoid content was significant in both Dermatocarpon sp. and A. gwynnii indicating that the increase in UV absorbing compounds, total phenolics and total carotenoid content act as a protective mechanism against the deleterious effect of UV−B radiations, whereas the change in chlorophyll content was not significant in both lichen species.
Go to article

Abstract

The spectroscopic FT-IR and FT-Raman methods allowed to identify the cross-linking process of the aqueous composition of poly(acrylic acid)/sodium salt of carboxymethyl starch (PAA/CMS-Na) applied as a binder for moulding sands (as a novel group binders BioCo). The cross-linking was performed by physical agent, applying the UV-radiation. The results of structural studies (IR, Raman) confirm the overlapping of the process of cross-linking polymer composition PAA/CMS-Na in UV radiation. Taking into account the ingredients and structure of the polymeric composition can also refer to a curing process in a binder - mineral matrix mixture. In the system of bindermineral matrix under the influence of ultraviolet radiation is also observed effect of binding. However, the bonding process does not occur in the entire volume of the investigated system, but only on the surface, which gives some possibilities for application in the use of UV curing surface of cores, and also to cure sand moulds in 3D printing technology
Go to article

Abstract

The paper presents a study of the performance of some selected UV detectors. Unlike many similar works, the obtained data refer to commercial photodiodes (not only to detector materials). The main task of the research was to determine the influence of the operating temperature and annealing on the detector spectral responsiveness. A comparison of the results obtained for the photodiodes made of GaN and SiC was also performed. Although both kinds of detectors can work at high temperatures for a long time, some modification of their properties was observed. However, for GaN and SiC photodiodes, this modification has a substantially different nature. It is very important for some applications, e.g. fire alarms and a military equipment.
Go to article

Abstract

This study examined the effects of UV-B radiation and allelochemical stress induced by ferulic acid (FA) on the activity of phenylalanine ammonia lyase (PAL; EC 4.3.1.5) at metabolic and molecular levels in two cucumber genotypes differing in tolerance to cold and disease, in order to determine any interaction between stress effects and genotype response. Stresses were applied simultaneously, sequentially, and singly. In both genotypes, several days of UV radiation retarded growth up to 36%. The effect of FA was not significant. The response to a particular stress, including the effect on PAL activation, was enhanced by simultaneous application of the two stresses. PAL transcription was not correlated with the increase of PAL activity. Exposure to UV-B, FA, and combined UV-B and FA was detrimental to both genotypes but to different extents. The response was not correlated with the genotype of cold and disease sensitivity. PAL activity and its transcription seem to be involved in UV and allelochemical stress, but not related to the plants' tolerance of these stresses.
Go to article

This page uses 'cookies'. Learn more